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ABSTRACT. In this paper a novel method for the analysis of straight line alignment of features in
the images based on Hough and Wavelet transforms is proposed. The new method is designed to
work specifically with nanoscale images, to detect linear structure formed by the atomic lattice.

1. INTRODUCTION

Nanoscale materials (i.e. materials designed on the scale of10−9 meters) have been growing
in interest in recent years. This is due to the emergence of nanotechnology as a field of interest
in technology and to the miniaturization limitations of current technology. Nanoscale-designed
materials promise to have radically different properties than their bulk counterparts. For example,
the photoluminescence properties of materials change significantly in nanomaterials. Widely dis-
cussed, carbon nanotubes have been either semiconducting or metallic and have vastly improved
strength over any bulk carbon.

It is important, then, to be able to characterize the materials being used in order to fully under-
stand the properties that they exhibit. A tool crucial to this characterization and understanding is
the Transmission Electron Microscope (TEM). In order to view and understand the arrangements
of atoms at an atomic scale, a high resolution transmission electron microscope is necessary. Fur-
thermore, tools helping to analyze the images taken from the microscope could vastly enhance the
ability of scientists to understand the phenomena that occur when designed at the nanoscale.

Crystalline materials are made up of atoms in specific sites within unit cells. These attributes
of crystalline materials help define the many attributes that the bulk material shows. The size of
these unit cells is on the order of only a couple of angstroms (10−10 meters) and so imaging them is
somewhat of a challenge. This is solved through the use of a TEM in which resolutions up to one
angstrom have been achieved. In a nanoscale world, the easy and reliable measurement of these
properties of the crystals is vital to the characterization of the materials being used.

Lattice spacing determination in high resolution electron microscope images is a key way in
which a material can be characterized and studied. The spacing of unit cells of atoms and the
angles that the sides of the unit cells make are both techniques in characterizing a crystalline
material. Also interesting are spaces in the crystal where this regularity breaks down. This can
symbolize defects in the crystal structure, such as dislocations, point defects, and planar defects.
Such defects can have a large impact on the properties of the material. In many cases, it can be
difficult to see the presence of nanoscale particles without an aid.
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When taking a low magnification, high resolution (500kx, 1.2 angstrom resolution) images,
layers of atoms manifest themselves as a series of parallel lines. The separation between these
lines can be used to determine the separation between the layers of atoms. This is important in
determining several important factors about the material, including the crystallographic orienta-
tion and some mechanical properties. Most of the time, these lines are visible to the human eye
and currently are measured by hand with a magnifying glass, after the pictures of the specimen
have been developed, and after the specimen is no longer in the microscope. More and more, these
microscopes have digital cameras installed on them, so the ability to make these measurements im-
mediately, while the specimen is still in the microscope is an extremely useful tool to researchers.
Knowing what you have already measured while you are still working on the microscope can lead
to better analysis and an easier time of making all of the correct measurements. Moreover the
visual scans are not very accurate and often miss hidden crystallographic orientations. Therefore,
developing a tool to automate the process of determining the spacing and orientation of the lat-
tice of atoms could be important to the development of the understanding of materials and their
properties at the nanoscale.
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FIGURE 1. Example of the TEM image of the ZnS structure. Parallel lines formed
by an atomic lattice are clearly visible. They form approximately30◦ angle with
they-axis.

Figure 1, shows the typical TEM image of the ZnS structure. The “linear” structure (paral-
lel lines of different orientation) formed by an atomic lattice is clearly visible. The difference in
orientation may come from the following sources: (i) different materials will have different ori-
entation; (ii) often the layer that is below the surface can be seen, and this creates the additional
orientation and (iii) different areas of the crystal can be oriented differently. Our primary goal is to
detect this linear structure, or more specifically, to find the parallel lines, their relative orientations,
and distances between parallel lines of the same direction. All this information is useful in the
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following important applications. First of all, by knowing of the relative orientation of different
materials we can learn more about the crystallographic structure of the interfaces of the materials.
Second, the knowledge of the orientation of the surface layer and the layers below it, coupled with
diffraction pattern and images at higher resolution, can give us signature of the material, its struc-
ture and properties. Finally by learning the distances between parallel lines the distance between
atoms, the lattice spacings can be determined.

This paper is organized as follows. In Section 2 we review concepts from signal and image
processing which play an important role in our project. In Section 3 we describe the proposed
method. In Section 4 we present the results, and Section 5 is devoted to a discussion.

2. BACKGROUND

The straight lines are the pattern of interest in the images. There are several different ways of
representing the straight line inR2. For convenience, thenormalrepresentation of the line is used:

x cos θ + y sin θ = ρ,

whereρ is the length of a normal from origin to the line andθ is the angle of the orientation ofρ
with respect to thex-axis (See Figure 2). Simple geometry shows that the angle between the line
and the “negative”y-axis is alsoθ. In the future, we will refer to an orientation as an angle formed
by the line and “negative”y-axis.

FIGURE 2. Normal representation of a straight line inR2.

There are many methods in image processing for the detection of lines. One of the most popular
is the Hough Transform (HT).

2.1. The Hough Transform. The Hough transform (HT) is a well known tool for the detection of
the straight lines. Paul Hough [3], deduced the method in order to detect the straight line tracks left
by the charged particles in a bubble chamber. His proposal was based more on intuition than on
formal mathematical ground. Later, Duda [2], introduced the(ρ, θ) parametrization, and Deans [1]
showed that the Hough transformation is in fact a special case of the well known Radon transform.

The Hough transform involves three main steps. The first step is the computation of a binary
edge imageI(x, y). The edge description is commonly obtained from a feature detection methods
such as the Laplacian of Gaussian method, the zero-crossing method, Robers Cross, Sobel, or



4 ILYA LAVRIK AND BRANI VIDAKOVIC

Canny edge detector, and it is usually noisy, i.e. it contains multiple edge fragments corresponding
to a single whole feature.

The second step is the evaluation of the formula

(1) HT (ρ, θ) =

∫∫

R2

I(x, y)δ(ρ− x cos θ − y sin θ)dxdy,

whereδ is the standard delta function,δ(x) = 0 for all x 6= 0. Equation (1) is the mathematical
representation of the standard Hough transform. Any grayscale image is stored in computer as a
matrix. Thus functionI(x, y) in the Equation (1) will be discrete. This requires the discretization
of the the parameters of the linesρ andθ. Hence the integrals in (1) will be represented as sums.
For anN ×N image, discrete values of the(ρ, θ) variables, within the intervals[−N/

√
2, N/

√
2]

and[0, π] respectively. Discretization of the parameterθ may, for example may be from1 to 180
degrees in steps of∆θ = 1, or one may choose half-degree step∆θ = 0.5, to increase sensitivity.
One can discretize parameterρ in similar way with different values for the step∆ρ. The size of the
steps creates the dimensions of a “probe line” or rectangular window/band along which the formula
is evaluated. Simply stated, the Hough transform computes the sum of the edge mapI, along
the straight “probe lines” defined by the polar parameters(ρn, θm), and stores the values in the
corresponding binsHT (ρn, θm) forming the accumulator matrixR. The Hough transform could
be generalized by changing the argument of the delta function. AgeneralizedHough transform can
be used for the detection of regular curves such as circles, ellipses,etc, and it is can be employed in
applications where a simple analytic description of features of a pattern of interest is not possible.
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FIGURE 3. Example of the HT applied to image in Fig 1. Notice irregularities at
27◦. These correspond to parallel lines formed by an atomic lattice clearly visible
in Fig. 1.
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FIGURE 4. An image with straight lines and the HT of this image. Notice a distinct
“butterfly” shape formed by the lines after the HT. The line in the neighborhood of
the point(250, 200) which forms an angle slightly over90◦ with the y-axis in a)
will correspond to the “butterfly” with its center approximately at(−90, 90) in b).

The last step is the analysis of the output. There are number of methods which one can employ
in order to extract bright points (local maxima), from the accumulator, in other words, unique(ρ, θ)
points corresponding to each of the straight lines in the image. The simplest method is therelative
thresholding. One could take only those local maxima in the accumulator whose values exceed
some fixed percentile. However, there are many local maxima that do not correspond to straight
lines because of sensitivity of the Hough transform to the correlated noise. Hence, the relative
thresholding generally performs poorly.

Figure 4 shows the representation of straight lines in the Hough transform output. The lines
have a more complex representation than just the local maxima. One can clearly see the distinct
distribution of intensity associated with each straight line featured in image space. The distribution
has the appearance of a butterfly with its wings extended in theθ direction. Therefore, instead of
looking for local maxima one can be looking for this particular distribution around local maxima.
This can be done by using a mask or filter that matches the distribution under investigation. The
analytical form of the “butterfly” distribution in transformed space has been deduced using a step
by step geometric approach and a limiting process. If the line under detection has a normal which
subtends an angleα with thex-axis, then

HT (ρ, θ) =
1

| sin(θ − α)| .

More information about the Hough transform, butterfly distribution and filtering, and other Hough
transform techniques can be found in [5] and [4].

2.2. Wavelets. Wavelet theory has developed into a methodology that is used in a range of disci-
plines, including mathematics, physics, geophysics, astronomy, signal processing, statistics, and a
number of applied fields. Wavelets provide a rich source of already indispensable and intriguing
tools for “time-scale” applications. The success of wavelets is attributed to their low computational
complexity, good locality and adaptivity, and potential to incorporate prior information about the
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phenomena. Hence, wavelets are natural tools in modeling complex data structures and multiscale
phenomena considered in this project. Wavelet-based methods have also proved to be very advan-
tageous for application to various theoretical statistical problems such as regression, probability
density estimation or inverse problems.

Wavelets and wavelet-like decompositions are well suited for analysis of non-stationary and non-
isotropic phenomena. They are capable of “zooming-in” and exploring local features at various
scales of interest. An additional feature of multiscale methods is that they are “friendly” towards
large data sets. In fact, fast filtering algorithms needed to perform wavelet transform exceed in
speed classical fast fourier transforms (FFT) and have a calculational complexity ofO(n).

Wavelets form an orthonormal basis{φj0,k, ψj,k, j ≥ j0, k ∈ Z}. It is known that any square
integrable functionf(x) can be decomposed with respect to wavelet basis into the following series

f(x) =
∑

k

cj0,kφj0,k +
∑

j,k

dj,kψj,k(x),

where

cj0,k =

∫
f(x)φj0,k(x)dx, dj,k =

∫
f(x)ψj,k(x)dx.

One of the major specificities of the wavelet orthonormal basis is in the fact that functionsψj,k and
φj0,k can be expressed as a scale-shift transform of functionsψ andφ as

ψi,j(x) = 2j/2ψ
(
2j · x− k

)
, φi,j(x) = 2j/2φ

(
2j · x− k

)
.

Functionsψ(x) andφ(x) are called wavelet and scaling functions respectively. The functionφ(x)
is different in nature, than the functionsψj,k, j, k ∈ Z. While the functionsψj,k, describe the details
in the decomposition (such as fast decay, oscillations, high frequency features,etc) the function
φ(x), is responsible for trend features of the decomposed function. The scaling function satisfies
the following relationship

(2) φ(x) =
∑

k

hkφ(2x− k),

leading to fast filtering schemes involving a filter forhk. Both wavelet and scaling functions can
be completely defined by a suitable choice of the coefficientshk in (2). There are many different
families of wavelets designed for capturing various features of the signals under investigation.
More information on the wavelets can be found in [7].

3. METHOD DESCRIPTION

As mentioned above, the first step is the creation of the binary edge map, edge detection. The
Canny method of edge detection was found to be particularly well suited for this purpose. The
method finds edges by looking for local maxima of the gradient of the image, calculated using
the derivative of a Gaussian filter. The method uses two different thresholds. The first threshold
detects strong and weak edges, and the other includes the weak edges in the output only if they
are connected to strong edges. Compared to other standard methods, the Canny algorithm is less
likely to be “fooled” by noise, and is more likely to detect true weak edges.

After the edge detection is complete, the standard Hough transform is performed to obtain the
accumulator matrixR. The parallel lines of different orientation formed by the atomic lattice
is pattern of interest. Due to the physical nature of the images, the presence of the parallel lines
throughout the whole image is expected. Parallel lines with the same orientation will be represented
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as bright points at one specific column (equivalently, angle) of the accumulator matrixR. Thus
it is expected that some angles would have more energy than that of others. The energy function
Ang, can be obtained from the accumulator matrixR, as follows

Ang(j) =
∑

i

R2
i,j, for j = 1, 2, . . . 180.

For convenience,Ang is normalized, so that it has a zero mean, and a unit sample variance. Fig-
ure 5 illustrates the application of the above concept to the image in Figure 1.
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FIGURE 5. Energy plotAng of the HT accumulator matrixR for the image in
Fig. 1. Notice three distinct peaks at27◦, 90◦ and119◦. The peak at27◦ corresponds
to a major visible orientation of the image in Fig. 1. The peak at119◦ corresponds
to a second orientation, which is barely visible.

The energy function helps identify the angles that correspond to structured patterns of parallel
lines. These angles will be represented on the graph of the energy function as sharp peaks. On the
other hand, those that do not correspond to such patterns, for example some instances of correlated
noise, will show up as flatter or less sharp local maxima. This behavior is captured in Figure 5,
where three distinct peaks can be observed at27◦, 90◦, and119◦ elucidating patterns of parallel
lines aligned at those angles. There is also a flat local maxima present around45◦ which does not
correspond to a pattern of interest. In this way, the identification of peaks in the graph of the energy
would accurately determine the orientations of the parallel lines formed by the atomic lattice.

Because of their localization property, wavelets are employed as an appropriate tool for detecting
peaks. To this end, the non-decimated wavelet transform of the energy functionAng is performed
using the Haar wavelet. Using two levels of the decomposition has proved to be sufficient to detect
the peaks. The coefficients at the two detail levels with large absolute values would correspond to
irregularities in the energy functionAng since the levels are close to the first and second discrete
derivatives of the function. For the Haar wavelet, if properly scaled, the first two levels are exactly
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the first two numerical derivatives. The following rule is used in order to determine the significance
of an angle. The anglei, for i = 1, 2, . . . 180, is considered to be a significant if it satisfies:

αdi,1 + (1− α)di,2 > αqp1(level1) + (1− α)qp2(level2)

and
di,1 > 0, di+1,1 < 0,

wheredi,1 anddi,2 are the coefficients of the first and second levels of the decomposition, respec-
tively, corresponding to a given anglei. Theqp(level k) is thep · 100% quantile of the coefficients
of level k, for k = 1, 2. The relative importance of the levels is selected by the value ofα. The
default values ofp1, p2, andα are0.90, 0.75, and0.75, respectively. These default parameters pro-
vide very good results in noisy and real life images. These parameters can be changed in order to
increase sensitivity and detect otherwise overlooked features. The first expression in this rule finds
all significant coefficients in the decomposition which correspond to irregularities in the function
Ang such as fast decay, discontinuity jumps, peaks,etc. The second guaranties that the suspicious
angle is local maxima. This rule proves to be a very efficient in finding peaks of the functionAng.
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FIGURE 6. Coefficients of the first level of non-decimated wavelet decomposition
of the functionAng in Fig 5. Notice the behavior of the coefficients at27◦, 90◦ and
119◦.

After analyzing real life images, an interesting feature is found: the peak at90◦ almost always
appears in the graph of the energy functionAng. It can be shown that this peak is an construct of
the Hough transform. For instance, if Bernoulli random noise is used to create an original edge
map image (with probabilityp for a given pixel to be 1), then the energy functionAng will have a
distinct shape shown in Figure 7.

The sharpness of the peak depends on the percentage of ones in an edged map. Sometimes,
some parts or the even a whole image will not posses any features of interest; still their energy
function will have a distinctive shape as in Figure 7. Thus, the shape of the energy function of an
image with only noise, can be used as a template function for the absence of linear structure in
images. It is very unlikely that a realistic nanoscale image would have parallel lines at90◦. Hence,
peaks at90◦ can be ignored.

After determining the orientation of the parallel lines, the next step is to find their location by
analyzing the columns of the accumulator matrixR. The angles, which were found in the previous
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FIGURE 7. FunctionAng that corresponds to the0− 1 image with probability0.1
for a given pixel to be 1.

step, would determine exactly which columns of the accumulator matrix are needed to be analyzed.
For example, in the image in Figure 1 only two orientations were detected – one at27◦ and a second
at119◦. Therefore, one should focus on only the27th and119th columns of the matrixR. Figure 8
shows the27th column of the accumulator matrixR.

−600 −400 −200 0 200 400 600
0

50

100

150

200

250

ρ (pixels from center)

In
te

n
s
it
y

FIGURE 8. Plot of the27th column of the accumulator matrixR.

The relative thresholding will correspond to a horizontal cut on the graph in Figure 8. If the
value of the threshold is too large (cut high) then too few lines would be detected. Lines that are
close to the end of the image would be ignored, as well as the lines whose length is relatively small.
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If the value of the threshold is too small (cut low), then too many “noise lines” would be detected
which would be useless for the analysis. To this end, a compromising thresholding technique based
on wavelets has been developed.

Let dis denote the column of interest of the accumulator matrixR. The lengthn of dis depends
on the size of the original image. The signaldis is decomposed using a wavelet transform. The
Vaidyanthan wavelet filter was selected for the decomposition. The sound-like form of the signals
gives a strong indication that the Vaidyanathan wavelet is appropriate, since this filter has been
optimized for speech coding. The number of levels in the wavelet decomposition is selected as

(3) nl =

⌊
log2(n− 1)

2

⌋
.

The wavelet decomposition is thus composed ofnl levels containing the details of the signaldis,
plus the smooth part, which contains the information about the general behavior of the signal. The
numbernl as in the (3), ensures that the smooth part does not contain any high frequency features.
Using only this smooth part of the wavelet decomposition, one can create a flexible threshold. Ap-
plication of the inverse wavelet transform to the smooth part only produces the smoothed version
of the signaldis. This reconstruction is used as a threshold criteria. The dotted curve in Figure 9 a)
shows the smoothed signaldis. After shifting the restored signal by an appropriate constant, one
can consider everything below the curve as insignificant. The standard deviation of the absolute
values of the residuals of the signaldis and its restored smoothed representation is selected as the
shift constant. The solid curve in Figure 9 a) represents shifted smoothed signaldis, which is used
as a threshold. By itself this threshold is not selective enough, for it selects too many lines. The
Vaidyanthan wavelet transform is then applied to the original signaldis again, but this time we
ignore the first level (finest level) of the decomposition. Similarly, the inverse wavelet transform
is applied to the smooth part of the decomposition. The restored signal repeats the behavior of the
original signaldis almost perfectly. Figure 9 b) shows the restored signal with only one level of
decomposition. There are key differences in a restored signal and the original signal which make
it easier to eliminate most of the extra lines. The restored signal is based on only half of the data
points of the original signal. It averages values of neighboring data points. The restored signal al-
ways shrinks towards its average. Everything below the restored signal is ignored. The combined
two-step thresholding produces good results.

Another challenge comes from the pixel representation of a straight line. The granularity of the
pixel representation of a line can be coarse enough for the Hough transform to detect two or more
lines of the same orientation, where, in fact only one line exists (see Figure 10). Some orientations
tend to create more neighboring parallel lines than the others. Experiments with different images
have shown that orientations which favor generation of several lines are located in the neighbor-
hood of the local minima of the function in Figure 7. This creates a problem for the analysis of
the lattice spacing – the distance between parallel lines of the same direction. The introduction of
several extra lines in close proximity will act as noise.

When working with real life images with visible linear structure, continuous straight lines are
rarely found, since lines are broken into pieces. The lines are not always straight, due to the defects
in a materials, and/or poor image quality. Thus, after edge detection there would be a noisy image
with fragmented lines. Even in the continuous fragments of the same line one can observe small
shifts (see Figure. 11). All these factors cause the single line to create several extra lines, which
brings more noise into the analysis.
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FIGURE 9. (a) Cyan - original signal. Dotted line - smoothed signaldis. Solid
curve - shifted smoothed signal. (b) Cyan - original signal. Blue - restored signal
without finest level.

FIGURE 10. Theoretical line(solid); its pixel representation. The dotted lines rep-
resents a neighboring line, which might get detected since it goes through many
pixels of the pixel representation.

The following procedure has been developed in order to solve this problem. Among detected
lines, those that are one, two or three pixels apart were singled out. From the equations of these
lines, pixel representations are generated. These representations are the coordinates of pixels out-
lining the original lines. Using these pixel coordinates the signal of zeros and ones can be obtained
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(a) (b)

FIGURE 11. A close-up on the linear structure of the ZnS structure. Notice how
the lines formed by an atomic lattice are not exactly straight or continuous. One
can clearly see that the lines are fragmented and continuous segments contain small
shifts. All this generates problems in the analysis.

from the edge map, which would correspond to a line under investigation. One could choose
several measurements in order to decide if the line is significant: the simple count of ones, the
maximum length of the continuous run of ones, or the average length of runs of ones. The signifi-
cance measure could help to differentiate between the actual line and the neighboring noise lines.
Figure 12 illustrates the representation of a detected line and its neighbor. Clearly the second line
b) is only detected because of the “spill-over” from line a). Therefore it could be ignored. This
step improves the results significantly.

4. RESULTS

4.1. Deterministic Images. Several synthetic images of size1024 × 1024 have been created in
order to test performance of the method. All images consist of fifty parallel lines of various ori-
entation with a fixed distance between them. Different levels of normal noise have been added to
each image. Table 1 shows the results of the analysis of these images.
Notation: “# of lines” refers to number of lines detected. “Distance” denotes estimated average
distance detected. “Std” refers to standard deviation of the estimated distance between the lines.
Since all the lines have a fixed distance between them, standard deviation theoretically should be
zero. However, because of approximations in constructing lines (i.e. pixel representation) some
small variability is expected. Images 1 through 4 have single orientation, where images 5-7 have
two sets of parallel lines and image 8 has three. Figure 13 shows an enlarged portion of image 8
together with the noise added to this image.

4.2. Nanoscale Images.Application of the method is demonstrated on the two TEM images of
the ZnS structures. Figures 14 and 15 show the images. Because of their large size the images
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FIGURE 12. Representation of the two neighboring lines detected after threshold-
ing. Line (b) is clearly detected as a “spill-over” from line (a) and can be ignored.

(a) (b)

FIGURE 13. (a) Example of the deterministic image with three sets of parallel lines;
(b) Example of the deterministic image with added normal noise (SNR=0.5). Notice
how the lines with144◦ orientation are barely visible in the noise.

have been broken into 4 subimages in the following manner
(1, 1) (1, 2)
(2, 1) (2,2)

. Each subimage is

analyzed separately. The results for each image can be found in Tables 2-4. The results are given
for the default parameter settings, using three-pixel difference elimination for close lines. A 10%
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Description SNR 0.3 0.5 0.7 1 3 No Noise
Image 1(1 set) # of lines 51 49 49 49 49 49
Distance between the lines is 25 pixelsDistance 23.5 25.06 24.93 25 25 25
Angle30◦ between lines andy axis Std 4.445 1.31 1.31 0.87 5.80E-15 5.86E-15
Image 2(1 set) # of lines 66 47 47 47 49 49
Distance between the lines is 20 pixelsDistance 16.18 20.06 20 20 19.58 20
Angle150◦ between lines andy axis Std 10.2 2.4 2 2 2.5 1.60E-14
Image 3(1 set) # of lines 49 49 48 48 48 48
Distance between the lines is 20 pixelsDistance 19.58 20 20 20 20 20
Angle120◦ between lines andy axis Std 3.03 1.23 0.437 1.25 8.38E-15 8.38E-15
Image 4(1 set) # of lines 67 50 48 46 47 48
Distance between the lines is 25 pixelsDistance 17.42 24.42 25 25 24.93 25
Angle144◦ between lines andy axis Std 8.29 5.26 1.37 1.73 1.18 1.67E-15
Image 5(2 sets) Set 1: # of lines 70 49 49 49 49 49
Distance between the lines is 25 pixelsDistance 17.75 25.06 24.93 25 24.93 25
Angle30◦ between lines andy axis Std 7.25 1.15 1.31 1.07 1.8 1.51
Set 2: # of lines 117 64 50 49 49 49
Distance between the lines is 25 pixelsDistance 10.9 19 24 25.06 25 25
Angle144◦ between lines andy axis Std 6.16 7.49 4.38 1.42 0.41 0.41
Image 6(2 sets) Set 1: # of lines 86 51 49 49 49 49
Distance between the lines is 25 pixelsDistance 14.21 24.44 25 24.93 25 25
Angle30◦ between lines andy axis Std 6.95 2.84 1.23 0.97 1.51 2.55
Set 2: # of lines 73 49 48 48 48 49
Distance between the lines is 20 pixelsDistance 15.36 20 20 20 20 19.93
Angle120◦ between lines andy axis Std 11.3 1.75 1.39 0.625 1.97 1.57
Image 7(2 sets) Set 1: # of lines 66 49 49 49 49 49
Distance between the lines is 20 pixelsDistance 16.09 19.93 20 20 20 20
Angle120◦ between lines andy axis Std 6.95 1.64 1.23 8.23E-15 8.29E-15 8.29E-15
Set 2: # of lines 119 72 50 50 49 49
Distance between the lines is 25 pixelsDistance 10.4 16.95 24.53 25.04 25 24.97
Angle144◦ between lines andy axis Std 5.83 7.65 2.78 1.15 0.61 0.14
Image 8(3 sets) Set 1: # of lines 98 52 48 49 49 49
Distance between the lines is 25 pixelsDistance 12.53 24.07 25 25 25 25.06
Angle30◦ between lines andy axis Std 6.66 3.74 1.25 1.51 1.51 2.18
Set 2: # of lines 89 51 49 49 49 49
Distance between the lines is 20 pixelsDistance 14.02 19.54 20.06 19.93 20 20
Angle120◦ between lines andy axis Std 10.35 2.71 1.57 1.15 8.29E-15 8.29E-15
Set 3: # of lines Failed 107 55 50 50 51
Distance between the lines is 25 pixelsDistance 11.94 22.18 25 24.95 24.52
Angle144◦ between lines andy axis Std 6.8 5.63 1.25 0.28 2.97

TABLE 1. Analysis of the deterministic images. Each set of lines consists of 50
parallel lines.

trimming from above is applied, for the estimation of the average distance between parallel lines
or lattice spacing. The theoretical lattice spacing for the ZnS materials is1.66 · 10−10 m. This if
for the inside of material in ideal condition, as on the surface the spacing may vary. As one can see
from the Tables 2-4, the estimate of the major layer is almost always greater than the theoretical
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distance. However, the estimate of distances for visible layers under the surface is very close to
the theoretical distance.

On the surface, the atoms experience different energetic responses than in the bulk of the mate-
rial. In order to compensate, the atomic layer relaxes (spreads out) or otherwise rearranges itself.
This is the major reason why the estimated distance of the main visible layer exceeds the theo-
retical distance. For some of the materials the way atoms rearrange themselves on the surface is
well studied, and the lattice spacing could be determined theoretically. For the others there is no
method that would give good understanding of the rearrangements and provide theoretical lattice
spacing. Our method allows the experimenter to estimate the lattice spacings quite accurately.

(a) (b)

FIGURE 14. (a) Image 1: size4050× 5220; (b) Image 2: size3360× 4560.

FIGURE 15. Image 3: size2415× 2745.

4.3. Image 1. Size4050×5220, scanned at 2400dpi and with microscope magnification of 500,000.
The image is broken into 4(2x2) overlapping images2048 × 2048, which give almost complete
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coverage of the original image. Quality of the subimage (1, 2) is poor. No features are found
with default parameter settings. Results of the analysis are in Table 2.29◦ is the major visible
orientation present almost throughout the entire image.78◦ is visible only in part of the image.

Subimage Detected Direction Average(in m.)
(1, 1) 29 2.18E-10
(2, 1) 29 2.37E-10
(2, 2) 29 2.16E-10

78 2.49E-10
TABLE 2. Image 1 analysis.

4.4. Image 2. Size3360×4560, scanned at 2400dpi and with microscope magnification of 500,000.
The image is been broken into 4(2x2) overlapping images2048 × 2048, which give almost com-
plete coverage of the original image.28◦ is the major visible orientation present almost throughout
the entire image.118◦ is the secondary orientation present almost always throughout the whole
image, but is barely visible, and with default parameter it is detected only once. Results of the
analysis are in Table 3.

Subimage Detected Direction Average(in m.)
(1, 1) 28 2.03E-10
(1, 2) 28 2.03E-10

99 2.10E-10
(2, 1) 28 2.06E-10
(2, 2) 28 2.10E-10

118 1.71E-10
TABLE 3. Image 2 analysis.

4.5. Image 3. Size2415 × 2745, 2400dpi and with microscope magnification of 500,000 times.
The image is broken into 4(2x2) overlapping images2048× 2048, which give complete coverage
of the original image. Results of the analysis are in Table 4.

Subimage Detected Direction Average(in m.)
(1, 1) 28 2.03E-10
(1, 2) 28 2.06E-10

118 1.89E-10
(2, 1) 28 2.03E-10
(2, 2) 28 2.30E-10

100 1.73E-10
118 1.81E-10

TABLE 4. Image 3 analysis.
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5. CONCLUSIONS ANDDISCUSSION

In this paper we propose a new method for the analysis of the nanoscale images. The proposed
method produces good results in both synthetic and real nano-scale images. It is recommended to
have two images of the same sample: one the rotated version of the other. Comparison of the results
of both images would allow for the removal of the uncertainty that comes from the sensitivity of the
Hough transform to certain orientations. This would increase accuracy in the analysis of the lattice
spacing. Current ’algorithmic’ methods of image rotation would preserve the image’s structure
completely, and the energy function would shift according to the angle of rotation (see Figure 16).
This is why it is recommended to have two images.
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FIGURE 16. Plot of the energy function of the rotated by5◦ image. The energy
function of the rotated image almost completely preserves structure of the energy
function for the original image. Everything is shifted by5◦.

It is possible to perform continuous directional wavelet transform of the images with the direc-
tions defined by the output of the analysis. The continuous directional wavelet transform would
extract the features of the images which are aligned in the given direction. Figure 17 shows the con-
tinuous directional wavelet transform of the image in Figure 1 in two directions27◦ and119◦. The
results of the continuous directional wavelet transform could tell a little bit more about structure
and defects in the material for specific orientation.

We support David Donoho’s initiative for reproducible research. MATLAB toolbox, tutorial file,
sample images, and m-files used to produce the calculations and pictures in this paper are available
at Jacket’s Wavelets pagehttp://www.isye.gatech.edu/˜brani/wavelet.html .
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FIGURE 17. Continuous Direction Wavelet Transforms of image in Fig. 1 a)27◦ b) 119◦.
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