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ABSTRACT

In this paper we propose a denoising methodology in the wavelet domain based on a

Bayesian hierarchical model using Double Weibull prior. We propose two estimators, one

based on posterior mean (DWWS ) and the other based on larger posterior mode (DWWS-

LPM ), and show how to calculate them efficiently. Traditionally, mixture priors have been

used for modeling sparse wavelet coefficients. The interesting feature of this paper is the use

of non-mixture prior. We show that the methodology provides good denoising performance,

comparable even to state-of-the-art methods that use mixture priors and empirical Bayes

setting of hyperparameters, which is demonstrated by extensive simulations on standardly

used test functions. An application to real-word data set is also considered.

1. INTRODUCTION

In the present paper we consider a novel Bayesian model in the wavelet domain as a

solution to the classical nonparametric regression problem

yi = f(xi) + εi, i = 1, . . . , n, (1)
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where xi, i = 1, . . . , n, are equispaced sampling points, and the errors εi are i.i.d. normal

random variables, with zero mean and variance σ2. The interest is to estimate the function

f from the observations yi. After applying a linear and orthogonal wavelet transform, the

equation in (1) becomes

djk = θjk + εjk,

where djk, θjk and εjk are the wavelet coefficients (at resolution j and position k) corre-

sponding to y, f and ε respectively. Note that εi and εjk are equal in distribution due to

orthogonality of wavelet transforms. Due to the whitening property of the wavelet transforms

(Flandrin, 1992) many of the existing methods assume independence of the coefficients, and

omit the double indices jk to work with a generic wavelet coefficient model

d = θ + ε, ε ∼ N (0, σ2). (2)

The indices will be used when needed for clarity of the exposition.

To estimate θ in model (2) Bayesian shrinkage rules have been proposed in the literature

by many authors. By a shrinkage rule the observed wavelet coefficients d are replaced with

their shrunk version θ̂ = δ(d). Then f is estimated as the inverse wavelet transform of

θ̂. Empirical distributions of detail wavelet coefficients for signals encountered in practical

applications are (at each resolution level) centered around and peaked at zero (Mallat, 1989).

A range of models, for which unconditional distribution of wavelet coefficients mimic this

observation, have been considered in the literature. The traditional Bayesian models consider

prior distribution on the wavelet coefficient θ as

π(θ) = ϵδ0 + (1− ϵ)ξ(θ), (3)

where δ0 is a point mass at zero, ξ is symmetric about 0, unimodal distribution, and ϵ is a fixed

parameter in [0,1], usually level dependent, that controls the amount of shrinkage for values

of d close to 0. This type of model was considered by Abramovich et al. (1998), Vidakovic

(1998), Clyde and George (1999, 2000), Vidakovic and Ruggeri (2001) and Johnstone and

Silverman (2005), among others.
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The above models provide good denoising performance because of their adaptivity pro-

vided by the point mass at zero. However, parameter ϵ, which controls the extent of shrink-

age, needs to be specified. One of the contributions of this paper is simplification of the

traditional mixture prior. We demonstrate that, in the wavelet context, a single prior can

match the performance of more complex contamination priors from (3).

The paper is organized as follows. Section 2 introduces the model and discusses the

advantage of using the Double Weibull prior. Section 3 explains the computation of two

Bayes’ estimators for our model, the posterior mean and the larger posterior mode. Section

4 contains simulations and comparisons to selected existing methods. Section 5 includes ap-

plication of the method to inductance plethysmography data. Some remarks and discussion

are provided in Sections 6 and 7.

2. MODEL

In our paper we consider the following Bayesian model

d|θ ∼ N (θ, σ2)

θ ∼ DW(b, c), (4)

where N (θ, σ2) denotes the Normal distribution and DW(b, c) denotes the Double Weibull

distribution with probability density function

π(θ|b, c) = c

2b
|θ|c−1 exp

{
−|θ|c

b

}
,

where b and c are the scale and shape parameters, respectively. The standard Weibull

distribution is popular for analyzing lifetime data. However, its symmetric relative, the

Double Weibull distribution, introduced by Balakrishnan and Kocherlakota (1985), is not

extensively used in the literature, and have not been used in the wavelet shrinkage context

previously. Balakrishnan and Kocherlakota (1985) considered a 3-parameter version of this

distribution with location parameter a, but in our case a = 0 since the prior on the wavelet

coefficient θ is always centered at zero, due to the definition of detail wavelet coefficients.

The Double Weibull is a flexible family, which includes the Double Exponential distri-

bution as its special case (c = 1). Figure 1 shows the Double Weibull density for b = 1
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Figure 1: Double Weibull distribution for different values of c.

and c = 1/3, 1/2, 1. In case of c < 1, the Double Weibull density approaches infinity as |θ|

approaches zero. This property of the prior will be crucial for the performance of the induced

Bayes estimators. The singularity at zero mimics the effect of a point mass at zero in the

mixture priors mentioned above. A prior with similar property was considered implicitly

by Cutillo et al. (2008), and explicitly by Carvalho et al. (2010). Carvalho et al. (2010)

consider the “Horseshoe” prior in form of a scale mixture of Normal densities and use it in a

context of sparse estimation. The Horseshoe prior, however, does not exist in a closed form.

The shrinkage estimator for the wavelet coefficient corresponding to the signal part θ,

derived from (4) is fully specified by eliciting the hyperparameters σ2, b and c. In this paper,

we consider two such estimators and evaluate their performance. The first is the posterior

mean, which is a traditional choice in Bayesian estimation problems and the second is the

“larger posterior mode”, denoted as LPM in the sequel. The shrinkage procedure based on

the posterior mean will be referred as Double Weibull Wavelet Shrinker (DWWS ), while

the one based on the LPM will have the acronym DWWS-LPM. The existence of the LPM

is an intrinsic characteristic of the considered Bayesian model (likelihood-prior). For more

information on the LPM approach the reader is referred to Cutillo et al. (2008).
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3. THE BAYES ESTIMATOR

In this section we provide details of how to find the posterior mean and LPM as the

proposed shrinkage estimators.

3.1 Posterior Mean

It is well known that the posterior mean, as an estimator of θ, has the following form

δ(d) =

∫
θg(d, θ)dθ

m(d)
=

∫
θf(d|θ)π(θ)dθ∫
f(d|θ)π(θ)dθ

, (5)

where g is the joint distribution, f is the likelihood, π is the prior, and m is the marginal

distribution. From the marginal distribution

m(d) ∝
∫
e−

(d−θ)2

2σ2 |θ|c−1e−
|θ|c
b dθ, (6)

it can be seen that the integral does not exist in a closed form for fixed c < 1. However, the

integral in (6) is finite, the posterior distribution is proper, and the posterior mean exists, as

well. This is true because we are convolving the Normal with the Double Weibull distribution,

which is integrable and all of its moments exist (Balakrishnan and Kocherlakota, 1985).

It is possible to evaluate this integral as a convolution using the characteristic functions of

the likelihood and the prior, but the characteristic function of the Double Weibull distribution

does not have a simple form and involves special functions (Nadarajah, 2008). Therefore the

posterior mean will be computed by numerical integration using adaptive Gauss-Kronrod

quadrature, for which we utilized the function script quadgk(fun,a,b) in MATLAB c⃝. It

is apparent in equation (6) that the integral has a singularity at θ = 0 for c < 1. One

can significantly increase the speed and accuracy of integration by removing this singularity,

which can be done with a change of variable. After a change of variable y = {sign(θ)θ}c the

posterior mean becomes

δ(d) =

∫ ∞

0
y1/ce−y/be−

(d−y1/c)
2

2σ2 dy −
∫ ∞

0
y1/ce−y/be−

(d+y1/c)
2

2σ2 dy

∫ ∞

0
e−y/be−

(d−y1/c)
2

2σ2 dy +
∫ ∞

0
e−y/be−

(d+y1/c)
2

2σ2 dy

. (7)
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Figure 2: Posterior mean for c=1/3.

If c has a form of 1/n, n odd, the posterior mean simplifies to

δ(d) =

∫ ∞

−∞
y1/ce−|y|/be−

(d−y1/c)
2

2σ2 dy

∫ ∞

−∞
e−|y|/be−

(d−y1/c)
2

2σ2 dy

. (8)

Note that for any c ∈ (0, 1) the posterior mean can be efficiently computed using 7. Figure

2 shows the posterior mean for c = 1/3, b = 0.4 and σ2 = 1.

Figure 3 shows the marginal distribution m(d), computed numerically for c = 1/3, b = 1

and σ2 = 1. The marginal distribution is compared to a Normal distribution with mean zero

and standard deviation 2.6, which arises from matching the interquartile range of the two

distributions. It is a desirable property in Bayesian wavelet shrinkage to produce a marginal

that matches the observed empirical distribution of wavelet coefficients. We can see from

Figure 3 that the marginal distribution corresponding to model (4) exhibits heavier tails,

and it is more peaked than the Normal density. This is in agreement with the observations

of Mallat (1989) concerning the shape of empirical distributions of wavelet coefficients.
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Figure 3: Marginal distribution of the wavelet coefficients.

Setting of the hyperparameters for the DWWS rule (5) is discussed in Section 4.1.

3.2 Larger Posterior Mode (LPM)

The LPM estimator was first introduced in the wavelet shrinkage context by Cutillo et

al. (2008), and it is based on the Bayesian MAP (Maximum a Posteriori) principle. The

LPM rule relates to the mode of the posterior distribution larger in absolute value. The

MAP estimator of the wavelet coefficient θ is a rule maximizing the posterior π(θ|d), which

is proportional to the joint distribution of d and θ, g(d, θ). Hence, the MAP estimator for θ

also maximizes g(d, θ). For the model in (4) the joint distribution is

g(d, θ) =
1√
2πσ2

e−
(d−θ)2

2σ2
c

2b
|θ|c−1e−

|θ|c
b .

This leads to the posterior proportional to

π(θ|d) ∝ g(d, θ) ∝ e−
(d−θ)2

2σ2 |θ|c−1e−
|θ|c
b .

Figure 4 shows the posterior distribution for c = 1/3, b = 1, σ2 = 1 and d = −3,−2,−1, 1, 2, 3.

Note that the shape of posterior depends on the absolute magnitude of the observed wavelet

coefficient d. If |d| is small, the posterior mode is unique and equals to 0. For large values

of |d| there are two posterior modes and the one larger in magnitude is chosen.
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Figure 4: Posterior distribution of the wavelet coefficients.

The logarithm of the posterior is proportional to

l = log π(θ|d) ∝ −(d− θ)2

2σ2
+ (c− 1) log |θ| − |θ|c

b
,

and has extrema at the solutions of the equation

d− θ

σ2
+ (c− 1)sign(θ)

1

|θ|
− c

b
sign(θ)|θ|c−1 = 0,

which is equivalent to the equation

− 1

σ2
θ2 +

d

σ2
θ − c

b
|θ|c + c− 1 = 0. (9)

For fixed c < 1 and by substituting y = |θ|c, equation (9) can be modified so that the

solution is equivalent to a solution of a polynomial equation of order 2/c. We will use the

following numerical algorithm to find the LPM estimator from equation (9):

(1) Find the roots of the equation − 1
σ2y

2/c + sign(d) d
σ2y

1/c − c
b
y + c − 1 = 0. Denote the

roots by y⋆ and the real roots by y⋆r .

(2) If all the roots are complex (y⋆r is empty), δLPM(d) = 0.

(3) If reals roots exist, δLPM(d) = sign(d)[max(y⋆r)]
1/c.
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Figure 5: LPM rule for c=1/3.

Therefore, the LPM estimator for the model in (4) is

δLPM(d) = sign(d)[max(y⋆r)]
1/c,

where max(y⋆r) is the maximum real root of the equation − 1
σ2y

2/c+sign(d) d
σ2y

1/c− c
b
y+c−1 =

0. If no real root of this equation exist, δLPM(d) = 0. In general, the roots can be computed

by a nonlinear equation solver for any real c ∈ (0, 1), but for a rational c = m/n the roots

can be found by a polynomial root solver, which was utilized in the implementation. Figure

5 shows the LPM rule for c = 1/3, b = 0.4 and σ2 = 1. It is apparent from the figure that

the rule is thresholding.

4. SIMULATIONS

In this section we apply the proposed shrinkage estimators and compare their performance

to several existing and established wavelet denoising methods. For the DWWS and DWWS-

LPM estimators we first discuss the selection of hyperparameters, then we present and

compare the simulation results.

4.1 Selection of Hyperparameters

In any Bayesian modeling task the selection of hyperparameters is critical for good per-
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formance of the model. It is also desirable to have a default selection of the hyperparameters

which makes the shrinkage procedure automatic. In the model (4) we need to specify pa-

rameters σ2, b and c.

Parameter σ2. Parameter σ2 represents the variance of the random error ε. In the wavelet

shrinkage literature σ2 is frequently estimated by a robust estimator of the variance of wavelet

coefficients at the finest level of detail (Donoho and Johnstone, 1994). We will adopt this

practice and use the robust MAD estimator to estimate σ as σ̂ = MAD/0.6745. Here MAD

stands for the median absolute deviation from the median of the wavelet coefficients at finest

level of detail, and the constant 0.6745 calibrates the estimator to be comparable with sample

standard deviation.

Parameter b. Scale parameter b accounts for the spread of the Double Weibull prior

distribution. We propose a moment matching parameter specification, which was used for

example by Cutillo et al. (2008) and Vidakovic and Ruggeri (2001). We propose to estimate

bj levelwise for all dyadic levels J0 ≤ j ≤ log2 n − 1. Because of the linearity of wavelet

transform, the i.i.d normal noise with variance σ2 transforms stochastically unchanged to

each dyadic level. In the case of the Double Weibull prior, the variance of the signal part

is c

√
b2jΓ(1 + 2/c). Since the model assumes independence of signal and error parts, we have

σ2
dj

= c

√
b2jΓ(1 + 2/c) + σ2, where σ2

dj
is the variance of the observations djk at jth dyadic

level. Therefore a reasonable estimator for bj is

b̂j =

{
(σ2

dj
− σ̂2)+

Γ(1 + 2/c)

}c/2

, J0 ≤ j ≤ log2 n− 1, (10)

where a+ = max(a, 0). In case σ̂2 > σ2
dj
, we set b̂j = 0. Having b̂j = 0 is equivalent to

a degenerate/point-mass-at-zero prior distribution on the wavelet coefficients. Therefore,

if b̂j = 0, we set all the wavelet coefficients at level j to zero, similarly to Vidakovic and

Ruggeri (2001).

Parameter c. Parameter c accounts for the shape of the prior distribution on the wavelet

coefficients. When smaller than 1, parameter c controls the “strength of infinity” at zero.

In this sense the role of c is similar to that of the point mass in the mixture prior models,
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Figure 6: Exact risk plot for posterior mean, for σ2 = 1 and σ2
dj

= 100.

and should be elicited depending on the signal regularity. In addition to this, parameter c

also controls the tails of the prior distribution. We used c = 1/3 in our simulations, which

empirically was the superior universal choice. Of course, c can be adaptively set depending

on the input signal under consideration, as we will do in Section 5.

Figure 6 shows the exact risks of the posterior mean estimator for different values of c.

We set σ2 = 1, σ2
dj

= 100 and specified b by equation (10) depending on different c’s. From

the plot we can see that the choice c = 1/3 is a good compromise in terms of risk. For |θ|

close to zero c = 1/3 provides smaller risk than c = 1/2 or c = 2/3, and for larger |θ| the

choice c = 1/3 has smaller risk than c = 1/4 or c = 1/5. Note that the pattern and shape of

the plot depends on the quantity σ2
dj
− σ2, but c = 1/3 was an empirically superior choice.

For c = 1/3, equation (9) becomes

− 1

σ2
θ2 +

d

σ2
θ − 1

3b
|θ|1/3 − 2/3 = 0,

and the algorithm to find the LPM estimator becomes equivalent to solving the equation

− 1

σ2
y6 + sign(d)

d

σ2
y3 − 1

3b
y − 2/3 = 0. (11)
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Note that it is possible to specify parameter c levelwise similar to specifying the weight

parameter in the Bayesian mixture prior models. Therefore, if elicited levelwise, c could

be set up to increase from the finest to the coarsest dyadic levels of wavelet coefficients.

However, because of simplicity and the good performance provided, c was held fixed through

the dyadic levels and the levelwise elicitation of parameter b provided the adaptiveness of

the shrinkage rule.

4.2 Simulations and Comparisons with Selected Methods

In this section we discuss the performance of the proposed DWWS and DWWS-LPM

estimators and compare them to some established wavelet-based methods for reconstructing

noisy signals. Four standard test functions (Blocks, Bumps, Doppler, Heavisine) were

considered (Donoho and Johnstone, 1994) in the simulation study. The functions were

rescaled such that the added noise (σ2 = 1) produced the preassigned signal-to-noise ratio

(SNR). The test functions were simulated at n = 512, 1024, and 2048 points equally spaced

in the unit interval. Three common SNRs were selected, SNR=3, SNR=5, and SNR=7. The

standard wavelet bases were used: Symmlet 8 for Heavisine and Doppler, Daubechies 6 for

Bumps and Haar for Blocks. The coarsest decomposition level was J0 = 3, which matches the

suggested J0 = ⌊log2(log(n)) + 1⌋ by Antoniadis et al. (2001). Note, that for computing the

DWWS estimator, MATLAB’s built-in Gauss-Kronrod quadrature method was used, and

the DWWS-LPM estimator is the solution of equation (11), for which MATLAB’s built-in

polynomial root-solver was used.

Reconstruction of the theoretical signal was evaluated by the average mean squared error

(AMSE), calculated as

1

Mn

M∑
k=1

n∑
i=1

(
f̂k(ti)− f(ti)

)2
,

where M is the number of simulation runs and f(ti), i = 1, . . . , n are known values of the

test functions considered. We denote by f̂k(ti), i = 1, . . . , n the estimator from the kth

simulation run.

The proposed estimators were compared to the EBAYES method of Johnstone and Sil-
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verman (2005) using the posterior mean, the BAMS method of Vidakovic and Ruggeri

(2001), the LPM method from Model 1 of Cutillo et al. (2008), the classical VisuShrink and

Hybrid-SureShrink of Donoho and Johnstone (1994, 1995), the scale invariant term-by-term

ABE method of Figueiredo and Nowak (2001), and finally the NeighCoeff method of Cai

and Silverman (2001). Note that methods EBAYES, BAMS, LPM and ABE are Bayesian.

Results are summarized in Tables 1 and 2, where boldface numbers indicate the smallest

AMSE result for each test scenario. The number of simulations performed was M = 1000.

From the results we can see that the proposed estimators are comparable to the established

shrinkage methods. In some scenarios involving Heavisine signal the DWWS is superior.

Simulations further indicate that the DWWS estimator outperforms the BAMS estimator

in 64% of the cases, and the EBAYES method in 28% of the cases. This is remarkable

considering that these Bayesian methods are based on a more complicated mixture model

with a point mass, and the latter one uses an empirical Bayes procedure to estimate the

hyperparameters. It is also evident from Tables 1 and 2, that the DWWS-LPM estimator

outperforms the LPM estimator in 67% of the cases. Note that for the model in Cutillo et

al. (2008) the posterior distribution is not proper for all values of the hyperparameter k,

hence the posterior mean does not exist. For the proposed model in (4) the posterior mean

always exists and the resulting DWWS estimator uniformly outperforms the DWWS-LPM

estimator. However, DWWS-LPM is computationally more robust and faster to compute.

Also note, that the authors of LPM select hypermarameter k separately for each simulated

test function, so the results are optimal. In our simulation study we kept hyperparameter

c default for each test function. It can also be seen from the results that the DWWS-LPM

estimator outperforms the ABE method in 81% of the cases. The difference in AMSE was the

most pronounced for signals Doppler and Heavisine. The ABE is also using a single prior

model and the MAP approach. Finally, the proposed methods outperform the non-Bayesian

methods VisuShrink, Hybrid-SureShrink and NeighCoeff under most test scenarios.

Graphical summary of the results is presented in Figure 7 where the boxplots of the MSE

are given for n = 1024 and SNR = 5.
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Signal N Method SNR=3 SNR=5 SNR=7 Signal N Method SNR=3 SNR=5 SNR=7

Blocks 512 DWWS 0.2174 0.1917 0.1790 Doppler 512 DWWS 0.2002 0.2244 0.2296

DWWS-LPM 0.2223 0.1940 0.1826 DWWS-LPM 0.2061 0.2315 0.2389

EBAYES 0.2122 0.1886 0.1670 EBAYES 0.1962 0.2155 0.2211

BAMS 0.2101 0.1943 0.1763 BAMS 0.1954 0.2131 0.2264

LPM 0.2217 0.1949 0.1756 LPM 0.2110 0.2258 0.2353

VISU 0.2769 0.2344 0.1945 VISU 0.2578 0.2779 0.2862

SURE 0.3517 0.3653 0.3530 SURE 0.2743 0.3797 0.4132

ABE 0.2221 0.2072 0.1967 ABE 0.2108 0.2240 0.2325

NC 0.4103 0.4031 0.3679 NC 0.1684 0.1784 0.1846

1024 DWWS 0.1563 0.1289 0.1241 1024 DWWS 0.1141 0.1348 0.1469

DWWS-LPM 0.1567 0.1329 0.1281 DWWS-LPM 0.1241 0.1456 0.1561

EBAYES 0.1510 0.1207 0.1038 EBAYES 0.1168 0.1363 0.1473

BAMS 0.1583 0.1311 0.1107 BAMS 0.1180 0.1350 0.1482

LPM 0.1596 0.1284 0.1130 LPM 0.1349 0.1584 0.1681

VISU 0.2161 0.1510 0.1231 VISU 0.1552 0.1855 0.2085

SURE 0.3108 0.2926 0.2274 SURE 0.1655 0.1964 0.2363

ABE 0.1695 0.1558 0.1472 ABE 0.1554 0.1709 0.1786

NC 0.3253 0.3088 0.2680 NC 0.0945 0.1160 0.1241

2048 DWWS 0.0919 0.0816 0.0795 2048 DWWS 0.0624 0.0771 0.0884

DWWS-LPM 0.0944 0.0852 0.0835 DWWS-LPM 0.0685 0.0846 0.0953

EBAYES 0.0865 0.0730 0.0603 EBAYES 0.0642 0.0773 0.0860

BAMS 0.0921 0.0788 0.0665 BAMS 0.0687 0.0783 0.0868

LPM 0.0914 0.0774 0.0643 LPM 0.0755 0.0887 0.0978

VISU 0.1172 0.0919 0.0712 VISU 0.0835 0.1003 0.1121

SURE 0.1740 0.1815 0.1629 SURE 0.0845 0.1184 0.1514

ABE 0.1227 0.1161 0.1108 ABE 0.1158 0.1242 0.1297

NC 0.1938 0.1798 0.1587 NC 0.0511 0.0636 0.0714

Table 1: AMSE of the proposed DWWS and DWWS-LPM estimators compared to other

methods for test signals Blocks and Doppler
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Signal N Method SNR=3 SNR=5 SNR=7 Signal N Method SNR=3 SNR=5 SNR=7

Bumps 512 DWWS 0.4659 0.4733 0.4875 Heavisine 512 DWWS 0.0793 0.1199 0.1534

DWWS-LPM 0.4908 0.5128 0.5270 DWWS-LPM 0.0912 0.1337 0.1696

EBAYES 0.4110 0.4417 0.4680 EBAYES 0.0842 0.1205 0.1502

BAMS 0.4834 0.5132 0.5573 BAMS 0.0957 0.1185 0.1374

LPM 0.4606 0.4885 0.5052 LPM 0.0932 0.1445 0.1800

VISU 0.7354 0.7630 0.8146 VISU 0.0996 0.1583 0.2028

SURE 0.7052 0.5953 0.6497 SURE 0.0826 0.1300 0.1751

ABE 0.4601 0.4983 0.5235 ABE 0.1315 0.1614 0.1845

NC 0.5828 0.5273 0.4779 NC 0.0898 0.1438 0.1759

1024 DWWS 0.2855 0.2986 0.3004 1024 DWWS 0.0504 0.0683 0.0890

DWWS-LPM 0.3057 0.3174 0.3156 DWWS-LPM 0.0583 0.0783 0.1008

EBAYES 0.2713 0.2921 0.2956 EBAYES 0.0536 0.0693 0.0866

BAMS 0.2969 0.3263 0.3404 BAMS 0.0607 0.0707 0.0815

LPM 0.3168 0.3318 0.3308 LPM 0.0635 0.0867 0.1121

VISU 0.4496 0.4808 0.4884 VISU 0.0683 0.0937 0.1223

SURE 0.3840 0.4676 0.4907 SURE 0.0534 0.0747 0.0955

ABE 0.3004 0.3193 0.3240 ABE 0.1075 0.1233 0.1360

NC 0.3217 0.3008 0.2878 NC 0.0667 0.0894 0.0989

2048 DWWS 0.1717 0.1871 0.1905 2048 DWWS 0.0313 0.0457 0.0560

DWWS-LPM 0.1836 0.1965 0.2007 DWWS-LPM 0.0376 0.0534 0.0630

EBAYES 0.1668 0.1816 0.1866 EBAYES 0.0339 0.0456 0.0543

BAMS 0.1823 0.1978 0.2049 BAMS 0.0402 0.0471 0.0531

LPM 0.2033 0.2110 0.2120 LPM 0.0395 0.0609 0.0760

VISU 0.2766 0.2948 0.2863 VISU 0.0416 0.0653 0.0887

SURE 0.2438 0.2907 0.3071 SURE 0.0344 0.0506 0.0709

ABE 0.2039 0.2132 0.2167 ABE 0.0925 0.1037 0.1103

NC 0.1824 0.1840 0.1877 NC 0.0435 0.0543 0.0599

Table 2: AMSE of the proposed DWWS and DWWS-LPM estimators compared to other

methods for test signals Bumps and Heavisine
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Figure 7: Boxplots of MSE for various shrinking procedures (1) DWWS, (2) DWWS-LPM,

(3) EBAYES, (4) BAMS, (5) LPM, (6) VisuShrink, (7) Hybrid, (8) ABE, (9) NeighCoeff

based on n = 1024 points and SNR = 5.
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5. APPLICATION TO INDUCTANCE PLETHYSMOGRAPHY DATA

In this section we apply the proposed wavelet estimators to a real-world data set from

anaesthesiology collected by inductance plethysmography. The recordings were made by the

Department of Anaesthesia at the Bristol Royal Infirmary and represent measure of flow

of air during breathing. This was analysed by several authors, for example Nason (1996)

and Abramovich et al. (1998, 2002). For more information about the data set, we refer the

reader to these two papers.

Figure 8 shows a section of plethysmograph recording lasting approximately 80 s (n =

4096 observations). Figure 9 shows the reconstructions of the signal with the DWWS and

DWWS-LPM methods. In our reconstruction we set c = 1/5, which provided a smoother,

visually more pleasing result, although this choice is not necessarily AMSE superior. Both

methods remove the noise well, however, the DWWS estimator based on the posterior mean

provides a slightly smoother result. Abramovich et al. (2002) report the height of the

maximum peak while analysing this data set. In our case the height is 0.8410 for the DWWS

method and 0.8421 for the DWWS-LPM. These are quite close to the result 0.8433, obtained

by Abramovich et al. (2002), and better compared to some established methods reported in

their paper.

6. REMARKS

It is worth mentioning here that a slight modification of the Double Weibull prior can lead

to a Bayes rule which can be expressed as a closed form using special functions. Consider

the following prior distribution on the wavelet coefficient θ:

π(θ|b, c) = 1

2Γ(c)bc
|θ|c−1 exp

{
−|θ|

b

}
,

which is the one dimensional special case of the more general Kotz distribution (Nadarajah,

2003) with p = 1, µ = 0, Σ = 1, N = (c + 1)/2, s = 1/2 and r = 1/b. Using an integral

identity (p.337, Gradshteyn and Ryzhik, 1980), the marginal distribution and the posterior

mean can be expressed as

m(d) =
σce−d2/2σ2

√
2πσ22bc

{
e(σ/2b−d/2σ)2D−c−1(σ/b− d/σ)− e(σ/2b+d/2σ)2D−c−1(σ/b+ d/σ)

}
,
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Figure 9: Reconstruction of inductance plethysmography data obtained by the DWWS and

DWWS-LPM methods.
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δ(d) = cσ
e−d/2bD−c−1(σ/b− d/σ)− ed/2bD−c−1(σ/b+ d/σ)

e−d/2bD−c(σ/b− d/σ)− ed/2bD−c(σ/b+ d/σ)
,

where Dv(x) is the parabolic cylinder function (Abramowitz and Stegun, 1964).

Because the marginal distribution is available in a closed form, the empirical Bayes pro-

cedure is a possibility for eliciting the hyperparameters of the prior. However, in practice,

this estimator is computationally more expensive than DWWS, DWWS-LPM, and the per-

formance in terms of AMSE is somewhat inferior.

7. CONCLUSIONS

In this paper we have proposed a methodology for Bayesian wavelet denoising. A hierar-

chical model was specified in which the Double Weibull distribution was utilized as the prior

on the locations of wavelet coefficients. In contrast to mixture priors used by some state-of-

the-art methods, the wavelet coefficients were modeled by a density with single expression.

The flexibility of the Double Weibull distribution was able to mimic the characteristics of

mixture priors consisting of a point mass at zero and a heavy tailed spread part. Two

Bayesian estimators were proposed, one as the posterior mean (DWWS ) and the other as

the larger posterior mode (DWWS-LPM ). We also showed how to compute them efficiently.

Simulations on standard test functions and comparisons with numerous existing methods

demonstrated that the methodology provides good and comparable denoising performance,

even compared to state-of-the-art methods that use mixture priors and empirical Bayes set-

ting of hyperparameters. Once again, we emphasize that the aim was the simplicity of the

model, and demonstration that a carefully selected single prior could match the performance

of more complex mixture priors. An application to real-word data set (inductance plethys-

mography) was also considered. The methodology performed well in both denoising and

preserving the important features of the real data.

Future improvements of the method are possible by specifying hyperparameter c based

on dyadic levels and signal regularity. Another avenue for future improvement can be the

approximation of integral in (5) to evaluate the posterior mean. However, if approximations

are asymptotic, this would work satisfactorily only in the case of shrinkage of multiple related

19



signals (Chang and Vidakovic, 2002).

In the spirit of reproducible research we made MATLAB scripts used in simulation for

DWWS and DWWS-LPM available at http://gtwavelet.bme.gatech.edu/.

Acknowledgement. The authors thank the editor and two anonymous referees for con-

structive comments that improved the paper.
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