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Abstract—The aim of this paper is to present results from
a comparative investigation into the diagnostic performance
of several wavelet-based estimators of scaling, some from
published literature and some newly proposed. These estima-
tors are evaluated based on their ability to classify digitized
mammogram images from a clinical database, for which the
true disease status is known by biopsy. We found that Abry-
Veitch and modified weighted Theil-type estimators provided
the best classification rates, while the standard wavelet-based
OLS estimator performed worst. The results are robust with
respect to choice of wavelets (Haar wavelet being an exception)
and are of potential clinical value. The diagnostic is based
on the properties of image backgrounds (which is an unused
diagnostic modality in Mammograms) and the best correct
classification rates achieve 90%, varying slightly with the choice
of basis, levels used, and size of training set.

Keywords-Wavelets; Scaling; fBm; Mammogram analysis;
Breast cancer diagnostic

I. INTRODUCTION

Breast cancer is one of the most common forms of cancer
among women in the United States, second only to non-
melanoma skin cancer. It has been estimated that 1 in 8
women born today will be diagnosed with breast cancer
during her lifetime [1]. One of the most important tools
toward reducing breast cancer deaths is advanced precision
of screening technologies. Early detection is still the best
strategy for improving prognosis and also leads to less
invasive options for both specific diagnosis and treatment.

Mammography is currently the best method for detecting a
breast cancer early, before the malignant tissue is substantial
enough to feel or cause symptoms. However, the radiological
interpretation of mammogram images is a difficult task since
the appearance of even normal tissue is highly variable and
complex, and signs of early disease are often small or indis-
tinct. Reading a mammogram image is a skill that physicians
develop over time, and confidently stating whether findings
are cancerous or not is often difficult. Suspicious findings
are commonly clarified by follow-up images, ultrasound, or
MRI. On the other hand, it has been estimated that 10−30%
of cancers which could have been detected are missed [2].
Thus, improving both the specificity and the sensitivity of
mammographic diagnoses is an important goal in improving
prognoses while also reducing the number of unnecessary
procedures or surgical operations.

In high frequency and irregular data collected in real-
life settings (both naturally occurring and human-made), a
commonly occurring phenomenon is that of regular scaling.
Examples of this have been found in a variety of systems and

processes including economics (stock market, exchange rate
fluctuations), telecommunications (internet data), physics
(hydrology, turbulence), geosciences (wind and rainfall pat-
terns), and several applications in biology and medicine
(DNA sequences, heart rate variability, auditory nerve-spike
trains). The irregular behaviors of these complex structures
are difficult or impossible to quantify by standard modeling
techniques; but when observations are inspected at different
scales, there is a regular relationship between the behavior
at each scale. This phenomenon has been demonstrated in
many medical images, leading to the diagnostic use of tools
capable of quantifying statistical similarity of data patterns
at various scales.

The standard measure of regular scaling is the Hurst
exponent. This measure can also be connected to measures
of long memory, dimension, and fractality in signals and
images and is viewed as an informative summary. Many
techniques for estimating the Hurst exponent exist, and as-
sessing the accuracy of these estimations can be complicated.
In this paper, we compare several scaling estimators, based
on various estimation techniques. But rather than focusing
on the modeling capabilities of these measures, we focus
on their ability to differentiate between cancerous versus
normal tissue in the backgrounds of mammogram images.
Note that this diagnostic use of information contained in
the background tissue of images is novel, since most of
the references found in literature dealing with breast cancer
detection methods are based on microcalcifications [3], [4],
[5]. Only recently has information contained in the back-
ground come into consideration [6]. This classifying measure
based on background tissue would be a new tool to be used
in combination with existing clinical diagnostic tools, thus
improving the power of non-invasive diagnostic techniques.

All measures used in this analysis are based on wavelet
theory, which continues to grow in its importance for image
processing techniques [7], [8], [6]. In this context wavelet
transforms are powerful tools because of their innate ability
to model statistical similarity of signals and images at
different scales.

The paper is organized as follows. Section II briefly
describes wavelet transforms and scaling, after which we
present the scaling assessment tools (classifiers) in Section
III. In Section IV we provide the comparative performance
of these classifiers. In Section V we provide discussion and
make recommendations for practical use of the methodology.
Technical details concerning newly introduced robust mea-
sures discussed in Section III are deferred to the Appendix.
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II. BACKGROUND

A. The Discrete Wavelet Transform

The advancement of computer and imaging technology
in modern medicine has resulted in enormous amounts of
medical imaging information available in digital formats.
Many techniques have been developed to make image infor-
mation more accessible and manageable for analysis. Among
these techniques, wavelet transforms have been shown to
be particularly useful. The wavelet transform decomposes a
signal into many different frequency bands, which works
very well with the statistical properties of most images,
thus lending itself to many useful applications in modeling,
analysis, and handling of image data. We now give a brief
overview of the discrete wavelet transform, and its extension
into the 2-D case.

The discrete wavelet transform (DWT) of a function
{𝑋(𝑡), 𝑡 ∈ ℤ} represents this function in terms of shifted
and dilated versions of a wavelet (or mother) function 𝜓(𝑡)
and shifted versions of a scaling (or father) function 𝜙(𝑡).
For specific choices of the scaling functions and wavelets,
an orthonormal basis can be formed from the atoms

𝜓𝑗,𝑘(𝑡) = 2𝑗/2 𝜓(2𝑗𝑡− 𝑘)

𝜙𝑗,𝑘(𝑡) = 2𝑗/2 𝜙(2𝑗𝑡− 𝑘), ∀𝑗, 𝑘.
Then 𝑋(𝑡) can be represented by wavelets as

𝑋(𝑡) =
∑
𝑘

𝑐𝐽0,𝑘𝜙𝐽0,𝑘(𝑡) +

∞∑
𝑗=𝐽0

∑
𝑘

𝑑𝑗,𝑘𝜓𝑗,𝑘(𝑡), (1)

where

𝑑𝑗,𝑘 =

∫
𝑋(𝑡) 𝜓𝑗,𝑘(𝑡)𝑑𝑡 and 𝑐𝑗,𝑘 =

∫
𝑋(𝑡) 𝜙𝑗,𝑘(𝑡)𝑑𝑡

are detail and scaling coefficients, respectively. Here, 𝐽0 is
the coarsest scale or lowest resolution of the transform, and
larger values of 𝑗 correspond to higher resolutions. For a
detailed introduction to wavelet theory, the reader is referred
to [9], [10], or [11].

Data sets can be easily and quickly transformed by the
DWT through coding the data by the wavelet coefficients.
When dealing with functions that are given by their sampled
values, it is customary to set the sampled values to be
“smooth” coefficients at the highest resolution level 𝑗 = 𝐽 .
The subsequent “detail” levels obtained through DWT are
denoted by 𝑑𝑗 , corresponding to 𝑗 = 𝐽 − 1, 𝐽 − 2, . . . , 𝐽0.

Many signals arising in practical applications (astron-
omy, geophysics, economics, etc.) are multidimensional.
The DWT is easily generalized to the multidimensional
case. Since we are interested in the wavelet transforms of
medical images, the generalization shown here is for the 2-
D case. The 2-D wavelet basis functions are constructed via
translations and dilations of a tensor product of univariate
wavelet and scaling functions:

𝜙(𝑡1, 𝑡2) = 𝜙(𝑡1)𝜙(𝑡2) 𝜓ℎ(𝑡1, 𝑡2) = 𝜙(𝑡1)𝜓(𝑡2)

𝜓𝑣(𝑡1, 𝑡2) = 𝜓(𝑡1)𝜙(𝑡2) 𝜓𝑑(𝑡1, 𝑡2) = 𝜓(𝑡1)𝜓(𝑡2). (2)

The symbols ℎ, 𝑣, 𝑑 in (2) stand for horizontal, vertical and
diagonal directions, respectively, since the atoms capture
image features in the corresponding directions.

Consider the wavelet atoms

𝜙𝑗,k(t) = 2𝑗 𝜙(2𝑗𝑡1 − 𝑘1, 2
𝑗𝑡2 − 𝑘2)

𝜓𝑖
𝑗,k(t) = 2𝑗 𝜓𝑖(2𝑗𝑡1 − 𝑘1, 2

𝑗𝑡2 − 𝑘2),

for 𝑖 = ℎ, 𝑣, 𝑑, where 𝑗 ∈ ℤ, t = (𝑡1, 𝑡2) ∈ ℝ
2, and k =

(𝑘1, 𝑘2) ∈ ℤ
2. Then, any function 𝑋 ∈ ℒ2(ℝ

2) can be
represented as

𝑋(t) =
∑
k

𝑐𝐽0k𝜙𝐽0,k(t) +
∑
𝑗≥𝐽0

∑
k

∑
𝑖

𝑑𝑖𝑗,k𝜓
𝑖
𝑗,k(t),

where the detail coefficients are given by

𝑑𝑖𝑗,k = 2𝑗
∫
𝑋(t) 𝜓𝑖(2𝑗t− k)𝑑t.

Since this transformation is linear, a fast DWT can be
achieved by matrix multiplication, similar to a Fast Fourier
transform. We direct the reader to [11] (pp 115-116, 153-
159) for the construction of these wavelet matrices, both in
the 1-D and 2-D case.

B. Scaling and wavelet-based spectra

The methodology used to analyze scaling is based on the
analysis of autocovariances, or correlations between obser-
vations as a function of the time separation between them.
The variance of a signal in its original domain corresponds to
its “energy” in the frequency domain. The term “energy” is
an informal name for the squared coefficients in frequency-
domain representations of signals and images such as (1).
Thus, the correlation between time-separated observations
in the original domain corresponds to the scaling of energy
in the frequency/scale domains. This introduces the idea of
energy spectra as a tool for characterizing the behavior of
data, and the Hurst exponent (𝐻) as the standard measure
of regular scaling. We now describe how this spectra can be
represented using wavelet-based methods, and then extend
these methods into the 2-D case.

A stochastic process {𝑋(𝑡), 𝑡 ∈ ℝ} is self-similar with
scaling exponent 𝐻 if, for any 𝜆 ∈ ℝ

+,

𝑋(𝜆𝑡)
𝑑
= 𝜆𝐻𝑋(𝑡), (3)

where
𝑑
= denotes equality of all joint finite-dimensional

distributions, throughout this paper. For a fixed level 𝑗, it
can be shown that under ℒ2 normalization,

𝑑𝑗𝑘
𝑑
= 2−𝑗(𝐻+1/2)𝑑0,𝑘.

If, in addition, 𝑋(𝑡) has stationary increments, then
𝐸 (𝑑0𝑘) = 0 and 𝐸

(
𝑑20𝑘

)
= 𝐸

(
𝑑200

)
. Therefore,

𝐸
(
𝑑2𝑗𝑘

) ∝ 2−𝑗(2𝐻+1). (4)

By taking logarithms on both sides of (4), we obtain the basis
for estimating 𝐻 , the wavelet spectrum, which is defined as

𝑆(𝑗) = log2
(
𝐸𝑑2𝑗𝑘

)
= −(2𝐻 + 1)𝑗 + 𝐶. (5)

For a more rigorous description of the wavelet spectra in
one dimension, we refer the reader to [12].

Nicolis et al. [6] generalized the definition of traditional
wavelet spectra to two-dimensions, which is presented after
a brief definition of the fractional Brownian motion.
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C. 2-D spectra

A popular standard model for images that scale is the
fractional Brownian motion (fBm) in two dimensions. A
2-D fBm, 𝐵𝐻(t), for t ∈ [0, 1] × [0, 1] and 𝐻 ∈ (0, 1),
is a random process with stationary zero-mean Gaussian
increments, for which (3) reads 𝐵𝐻(𝑎t)

𝑑
= 𝑎𝐻𝐵𝐻(t).

In Nicolis et al.’s generalization of traditional wavelet
spectra to 2-D, three different hierarchies 𝑖 = {ℎ, 𝑣, 𝑑}
(horizontal, vertical, and diagonal directions) constitute the
detail spaces. The natural definition of the wavelet spectra
then involves power spectrum corresponding to each of
these three hierarchies. For the fBm in two dimensions, the
expected value of the corresponding detail coefficients will
verify that

𝐸
[∣∣𝑑𝑖𝑗,k∣∣2] = 𝑐𝑖2

−(2𝐻+2)𝑗 , (6)

for some constant 𝑐𝑖 depending on the wavelets 𝜓𝑖 in (2),
but not on the scale 𝑗. By taking logarithms on both sides
of (6), we obtain the 2-D wavelet-based spectra

𝑆𝑖(𝑗) = log2𝐸
[∣∣𝑑𝑖𝑗,k∣∣2] = −(2𝐻 + 2)𝑗 + 𝐶𝑖, (7)

by which 𝐻 for 2-D fBm is estimated.
While (5) and (7) give the basis for estimating 𝐻 in 1-D

and 2-D, respectively, specific methods for this estimation
continue to be investigated and improved upon. This is
the motivation behind the comparative analysis of scaling
estimators presented in this paper. We now present analysis
comparing the discriminatory power of six different wavelet-
based scaling estimators, applied to the context of assessing
the presence of cancer in mammogram images.

III. METHODS

A. Existing scaling estimators

1) Ordinary least squares regression (OLS): Using ordi-
nary least squares regression (OLS), directional Hurst ex-
ponents (diagonal (𝐻𝑑), horizontal (𝐻ℎ), and vertical (𝐻𝑣))
can be estimated from the slopes of the linear equations in
(7). The empirical counterpart to this is an OLS regression
defined on pairs(

𝑗, log2

∣∣∣𝑑𝑖𝑗,k∣∣∣2
)
, 𝑖 = ℎ, 𝑣, 𝑑. (8)

where
∣∣∣𝑑𝑖𝑗,k∣∣∣2 is an empirical counterpart of 𝐸

[∣∣∣𝑑𝑖𝑗,k∣∣∣2
]

.

The slope of the regression would estimate 𝐻 , i.e., 𝐻 =
−(𝑠𝑙𝑜𝑝𝑒 + 2)/2. This method is in prevalent use for both
estimation of 𝐻’s and classification by 𝐻’s, and as we will
see later is suboptimal in the context of classification.

2) Abry-Veitch weighted regression (AV): Veitch and
Abry [12] improved the method shown in (III-A1) to a
weighted linear regression, because the problem is het-

eroscedastic. Since the variances of the log2

∣∣∣𝑑𝑖𝑗,k∣∣∣2 vary
with j, this method weights each level by the inverse of the
variance of that level. 𝐻’s are then estimated from the slopes
of these weighted regressions. In addition, a bias correction
term is introduced because of the passing with expectation
through a logarithm.

B. Newly defined robust scaling estimators

A new, more robust class of Theil-type [13] estimators
is introduced. Such estimators use a weighted average of
all pairwise slopes, thus are robust with respect to possible
outlier levels and free of any distributional assumptions.
In our context, the slopes of the linear equations in (7)
are assessed as a weighted average of all pairwise slopes,
𝑠𝑖,𝑗 between levels 𝑖 and 𝑗. The estimator of the overall
slope then is

∑
𝑖,𝑗 𝑤𝑖𝑗𝑠𝑖𝑗/

∑
𝑖,𝑗 𝑤𝑖𝑗 . The weights for each

pair are designed to reduce the undue influence that outliers
can have on estimates. Four new weights of this nature are
investigated.

1) Harmonic average weighted slopes (HA): Theoreti-
cally optimal weights for slope 𝑠𝑖𝑗 between levels 𝑖 and
𝑗 are proportional to

𝑤𝑖𝑗 ∝ (𝑖− 𝑗)
2 ×𝐻𝐴

(
22𝑖, 22𝑗

)
,

where 𝐻𝐴 is the harmonic average. Derivation of this weight
is given in the appendix, but the rationale is that each
pairwise slope is weighted by an inverse of variance of the
estimated slope for that pair. We will denote this estimation
method as HA.

2) Level-enhanced ordinary least squares (EOLS): It is
well known that the OLS estimator has previously been
extended to a Theil-type representation with weights 𝑤𝑖𝑗 ∝
(𝑖 − 𝑗)2, e.g., [14]. After extensive simulation analysis we
found that slopes based on the finer levels in wavelet decom-
positions are more critical for classification purposes. Thus
we modified the weights to further favor the differentiating
finer levels as

𝑤𝑖𝑗 ∝ 𝑖𝑗(𝑖− 𝑗)2.

We will denote this estimation method as EOLS.
3) Modified HA and EOLS: Estimation of 𝐻 and classi-

fication by 𝐻 are two different tasks, and optimal estimators
in one context may not perform well in the other. This
is especially true for real-life images for which theoretical
models are just an approximation. As previously stated,
finer levels in wavelet decomposition are critical for correct
classification. Utilizing the property that these levels also
have more coefficients, we multiplied HA and EOLS weights
by a product of the number of coefficients involved, 2(𝑖+𝑗).
The estimators with such weights emphasize heavily the fine
detail levels and we denoted them as MHA and MEOLS.

IV. RESULTS

A. Description of the Data

The collection of digitized mammograms we analyzed
was obtained from the University of South Florida’s Dig-
ital Database for Screening Mammography (DDSM) [15].
The DDSM is described in detail in [16]. Images from
this database containing suspicious areas are accompanied
by pixel-level “ground truth” information relating locations
of suspicious regions to what was assessed and verified
through biopsy. We selected 105 normal cases (controls)
from volumes normal-01, and 72 cancer cases from vol-
umes cancer-01 and cancer-02. Each case study contains
four mammograms (two for each breast: the craniocaudal
(CC) and mediolateral oblique (MLO) projections) from a
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screening exam. We considered only the CC projections,
using the right breast image for all normal controls, and
the cancerous breast (right or left) image for cancer cases.
A subimage of size 1024 × 1024 was taken from each
mammogram image for analysis. An example of an image
and its subimage is provided in Fig. 1.

Fig. 1. Left panel: right CC mammogram corresponding to a cancer case.
Right panel: subimage of size 1024× 1024 considered for the analysis.

B. Classification of digitized mammograms

For every subimage, we performed the DWT using four
different wavelet filters (Haar, Daubechies 4 tap, Symmlet 8
tap, Coiflet 6 tap), ensuring the filter choice did not favor any
estimator over the others. Results are comparable except for
the Haar wavelet for which the separation of cancer cases
and controls was inadequate. We also tried three different
level ranges: 2 to 6, 2 to 8, and 5 to 8. We provide here
detailed results for the slopes that involve levels 5 to 8 using
Daubechies 4, since this basis is the most local. After each
transform, we used each of the six estimation methods to
compute the estimated directional Hurst exponents (𝐻𝑑, 𝐻ℎ,
and 𝐻𝑣). All estimators are calculated after adjusting for AV
bias [12]. Multiple classification methods were then used, to
inform the tradeoffs between model simplicity versus power.
Performance of each estimator was compared in terms of
sensitivity, specificity, and overall misclassification rate.

The estimated density of 𝐻’s obtained from diagonal
wavelet spectra alone (𝐻𝑑) are shown in Fig. 2. The most
parsimonious classifying model, without significant sacrifice
in correct classification rates, includes only 𝐻𝑑 as the
predictor. Fig. 3 is the logistic regression curve (in red) fitted
over scores 𝑏0 + 𝑏1𝐻𝑑. Green dots represent cancer cases at
level 1, and controls at level 0.

Fig. 4 shows an ROC curve of 𝐻𝑑 in differentiating
between controls and cancer cases. The diagonal line rep-
resents a test with a sensitivity of 50% and a specificity of
50%. This shows the ROC curve lying significantly to the
left of the diagonal, where the combination of sensitivity
and specificity are highest. The area under the ROC curve,
which is proportional to the diagnostic accuracy of the test,
is 0.8820. Table I summarizes the results of the classification
based only on 𝐻𝑑, for each estimation method. In the first

−0.4 −0.2 0 0.2 0.4 0.6 0.8 1
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Fig. 2. Estimated density of 𝐻𝑑 obtained from 105 controls (solid line)
and 72 cancer cases (dotted line). The estimated 𝐻’s are empirical and flat
spectra can cause 𝐻 to be negative.
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Fig. 3. Logistic regression: logit(𝑝) = −0.8927− 22.7722 ⋅𝐻𝑑, where
𝐻𝑑 is the Abry-Veitch estimator.

two columns, we provide the area under the ROC curve
(AUC) and 𝐻∗𝑑 , which is the value for 𝐻𝑑 on the ROC
curve where the maximum distance from the diagonal is
achieved (i.e., maximum Youden index). The last three
columns provide 1−𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦, 1−𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦, and Error
(misclassification) rate achieved at the threshold 𝐻∗𝑑 .

TABLE I
RESULTS OF CLASSIFICATION BY LOGISTIC REGRESSION USING 𝐻𝑑 .

Method AUC H∗
d 1-Se 1-Sp Error

OLS 0.5907 0.0212 0.6250 0.2286 0.3898
AV 0.8820 -0.0240 0.1528 0.2095 0.1864
HA 0.8073 -0.0005 0.2361 0.2667 0.2542
MHA 0.9321 -0.0624 0.1806 0.0952 0.1299
EOLS 0.6251 0.0093 0.5833 0.2191 0.3672
MEOLS 0.7783 -0.0093 0.3472 0.2286 0.2768
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Fig. 4. ROC curve for the logistic regression: logit(𝑝) = −0.8927 −
22.7722 ⋅ 𝐻𝑑, where the most distant point from the diagonal (Youden
index) is achieved at 𝐻∗

𝑑 = −0.0240 for which Sensitivity was 84.7% and
Specificity 79%.

Both linear and quadratic classification methods were then
implemented using pairs (𝐻𝑑, 𝐻ℎ). The classifier based on
(𝐻𝑑, 𝐻𝑣) is comparable in performance. But the remaining
combination (𝐻ℎ, 𝐻𝑣) turns out to be suboptimal and we
dropped it from consideration. We randomly selected 66%
of the data as a training set to fit the classifier and used the
remaining 34% of the data to test performance. The random
selection of training and testing data was repeated 10,000
times, so the reported prediction errors are averaged over
10,000 runs.

Fig. 5 shows a scatter plot by 𝐻ℎ versus 𝐻𝑑, illustrat-
ing the differentiation between controls and cancer cases.
Table II summarizes the results of linear and quadratic
classifications based on pairs (𝐻𝑑, 𝐻ℎ), for each estimation
method. Results are given in terms of 1 − 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦,
1−𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦, and Error (misclassification) rate. The per-
formance of linear and quadratic classifiers was comparable,
and both were slightly better than classification by 𝐻𝑑 alone.

Finally, to assess the value of using all three directional
Hurst exponents (𝐻𝑑, 𝐻ℎ, and 𝐻𝑣), we also conducted a
classification analysis involving Support Vector Machines
(SVM) and several modeling scenarios (three exponents,
as well as nine exponents obtained for different choices of
levels). The classification rates improve, but not significantly.
The relative performance of the six estimation methods was
consistent regardless of the classification method used.

V. DISCUSSION AND CONCLUSIONS

In this paper we presented a comparative investigation into
the diagnostic performance of six wavelet-based estimators
of scaling. The HA and EOLS are newly defined robust
estimators, while their modifications MHA and MEOLS are
motivated by the specific application of diagnostic mam-
mography. We found that MHA, MEOLS, and Abry-Veitch
estimators provided the best classification rates, for a range
of wavelets and level choices. The standard wavelet-based
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Fig. 5. Scatter plot of 𝐻ℎ versus 𝐻𝑑. Circles denote controls, and crosses
denote cancer cases.

TABLE II
RESULTS OF LINEAR AND QUADRATIC CLASSIFICATION BASED ON PAIR

(𝐻𝑑, 𝐻ℎ).

Method 1-Se 1- Sp Error
Linear OLS 0.3301 0.3430 0.3377

AV 0.1152 0.1114 0.1130
HA 0.1496 0.1802 0.1678
MHA 0.0910 0.0913 0.0912
EOLS 0.2931 0.3200 0.3090
MEOLS 0.1658 0.2014 0.1869

Quadratic OLS 0.2477 0.4144 0.3466
AV 0.1282 0.1216 0.1243
HA 0.1511 0.1982 0.1791
MHA 0.1042 0.0853 0.0930
EOLS 0.2310 0.3799 0.3194
MEOLS 0.1590 0.2296 0.2009

OLS estimator did not perform well and our recommen-
dation is that this estimator should not be used in tasks
of classification. The overall misclassification rate of the
new weights proposed in this paper (HA, MHA, EOLS
and MEOLS) was lower than the ordinary least squares
estimate in all settings. It should be noted that these are not
necessarily global phenomena, rather specific observations
in mammography image classification.

Diagonal spectra (𝐻𝑑) was found to be the most dis-
criminatory and little power is lost if only this spectra is
used. But, although 𝐻𝑑 itself is strongly discriminatory and
the most parsimonious classifying model, the use of 𝐻𝑑

in combination with 𝐻ℎ (or 𝐻𝑣) does perform better than
𝐻𝑑 alone. Further, the results of SVM classification using
all three spectra (𝐻𝑑, 𝐻ℎ, 𝐻𝑣) did perform slightly better
than the linear or quadratic classifications. This implies that
each wavelet spectra has some level of power to differentiate
between normal and malignant cases.

A meaningful implication of this research is the improve-
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ment of both sensitivity and specificity of current clinical
diagnostic tests for breast cancer. The ambiguities involved
in current diagnostic methods often result in extra costs,
painful additional procedures, or missed cancers. With this
tool, reasonable misclassification errors are achieved, and a
promising new indicator may be added to current screening
techniques.

APPENDIX: DERIVATION OF HA METHOD

In this appendix we provide a skeleton of the derivation of
HA. For the detailed derivation see http://www.prism.gatech.
edu/∼gte925z/papers/BIBM2011Appendix.pdf.

Let 𝑑𝑗 = 𝑑𝑗k be an arbitrary (wrt k) wavelet coefficient
from the 𝑗th level of the decomposition of the 𝑚-D fBm
𝐵𝐻(𝜔, t), t ∈ ℝ

𝑚,

𝑑𝑗 =

∫
ℝ𝑚

𝐵𝐻(𝜔, t)𝜓∗𝑗k(t)𝑑t,

for some fixed k = (𝑘1, . . . , 𝑘𝑚). Here 𝜓∗𝑗k(t) =∏𝑚
𝑖=1 𝜓

∗
𝑗𝑘𝑖

(𝑡𝑖) where 𝜓∗ is either 𝜓 or 𝜙, but in the product
there is at least one 𝜓. It is well known that

𝑑𝑗
𝑑
= 2−(𝐻+𝑚/2)𝑗 𝑑0,

where 𝑑0 is a coefficient from the level 𝑗 = 0, and
𝑑
= means

equality in distributions [6]. Coefficient 𝑑𝑗 is a random
variable with

𝔼 𝑑𝑗 = 0, 𝕍ar 𝑑𝑗 = 𝔼 𝑑2𝑗 = 2−(2𝐻+𝑚)𝑗 𝜎2,

where 𝜎2 = 𝕍ar 𝑑0.
The rescaled “energy”

2(2𝐻+𝑚)𝑗

𝜎2
𝑑2𝑗 ∼ 𝜒2

1,

while assuming the independence of 𝑑𝑗𝑘’s (as is standard),

2(2𝐻+𝑚)𝑗

𝜎2

∑
k∈𝑗th level

𝑑2𝑗k =
2(2𝐻+2𝑚)𝑗

𝜎2
𝑑2𝑗

has 𝜒2
2𝑚𝑗 distribution. Here, 𝑑2𝑗 is the average energy in the

𝑗th level.
Thus,

𝑑2𝑗
𝑑
= 2−(2𝐻+2𝑚)𝑗𝜎2𝜒2

2𝑚𝑗 .

From this,

𝔼 𝑑2𝑗 = 𝜎22−(2𝐻+2𝑚)𝑗
𝔼𝜒2

2𝑚𝑗 = 2−(2𝐻+𝑚)𝑗𝜎2

and

𝕍ar 𝑑2𝑗 = 𝜎42−(4𝐻+4𝑚)𝑗 × 2 ⋅ 2𝑚𝑗 = 2−4𝐻𝑗−3𝑚𝑗+1𝜎4.

Recall that if 𝑋 has 𝔼𝑋 and 𝕍ar𝑋 finite and 𝜑 is a
function with finite second derivative at 𝔼𝑋 , then

𝔼𝜑(𝑋) ≈ 𝜑(𝔼𝑋) +
1

2
𝜑′′(𝔼𝑋) ⋅ 𝕍ar𝑋.

and

𝕍ar𝜑(𝑋) ≈ (𝜑′(𝔼𝑋))2𝕍ar𝑋.

When 𝜑 is logarithm for base 2, then

𝔼 log2 𝑑
2
𝑗 = −(2𝐻 +𝑚)𝑗 − 1

2𝑚𝑗 log 2
+ log2 𝜎

2.

Note that − 1
2𝑚𝑗 log 2 is the Abry-Veitch bias term, and it is

free of 𝐻 and 𝜎2. This bias is a second order approximation.
Also,

𝕍ar log2 𝑑
2
𝑗 =

2

2𝑚𝑗(log 2)2
.

Finally,

𝕍ar

(
log2 𝑑

2
𝑗 − log2 𝑑

2
𝑖

𝑗 − 𝑖

)
=

2

(log 2)2
⋅ 1/2

𝑚𝑗 + 1/2𝑚𝑖

(𝑗 − 𝑖)2
.

Since weights 𝑤𝑖𝑗 are inverse-proportional to the variance,
then

𝑤𝑖𝑗 ∝ (𝑖− 𝑗)2 ×𝐻𝐴(2𝑚𝑖, 2𝑚𝑗).

where 𝐻𝐴 is the harmonic average.
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