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Abstract

Here we delineate a robust approach for estimating the wavelet-
based multifractal spectrum (MFS) in two dimensions considered by
Ramı́rez-Cobo and Vidakovic (2012).
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1 Introduction

Fractal and multifractal approaches have been used to analyze a variety of
signals in areas such as finance, geophysics, web, teletraffic and medicine, see
Chhabra et al. (1989), Mandelbrot (1989), Mandelbrot (1997), Riedi (1999)
and Reljin (2002). These signals are characterized by the implicit occurrence
of irregularities and certain degree of self-similarity over a range of scales.
One the tools considered in the literature for analyzing self-similar signals is
the multi fractal spectrum (Riedi, 1999), which quantifies different degrees
of scaling existing in a signal.

Because of the number of application in medicine, climatology and geo-
physics (see Netsch 1999, Shi 2005), among others, in this paper we focus
on two-dimensional data. Ramı́rez-Cobo and Vidakovic (2012) considered
the extension of the multi fractal spectrum to the two-dimensional case us-
ing wavelet transforms. In that work the authors also suggest an estimation
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method along the lines of Goncalves (1998), and applied their approach for
the analysis of digitized mammograms. The purpose of this work is to con-
sider robust estimation of the 2D multi fractal spectrum, where the motiva-
tion is to take into account the possible violations in the model assumptions
presented by real-life datasets (frequency-dependent noise, non-Gaussianity,
outlier multiresolution levels). Our approach is based on Theil-type weighted
regression (Theil, 1950), where average multiresolution level ”energies” are
regressed against the level indices and builds on work of Hamilton et al
(2011).

2 Preliminaries

2.1 Background on wavelets

The discrete wavelet transform expresses a real signal X(t) in terms of shifted
and dilated versions of a wavelet (or mother) function ψ(t) and shifted ver-
sions of a scaling (or father) function φ(t). For specific choices of the scaling
functions and wavelets, an orthonormal basis can be formed from the atoms

ψj,k(t) = 2j/2ψ(2jt− k)

φj,k(t) = 2j/2φ(2jt− k), j, k ∈ Z.

The signal X(t) can be thus represented by wavelets as

X(t) =
∑
k

cJ0,kφJ0,k(t) +
∞∑
j=J0

∑
k

dj,kψj,k(t),

where

dj,k =

∫
X(t)ψj,k(t)dt and (1)

cj,k =

∫
X(t)φj,k(t)dt, (2)

are detail and scaling coefficients. Here, J0 indicates the coarsest scale or low-
est resolution of analysis, and a larger j corresponds to higher resolutions.
For a detailed wavelets theory, we refer to the reader to Daubechies (1992)
or Mallat (1997). In practice, many signals are multidimensional. Examples
include measurements in geophysics, medicine, astronomy, economics, and
so on. The wavelet transform is readily generalized to the multidimensional
case. Since we are interested in the wavelet transforms of images, the gen-
eralization we show is for the two-dimensional case. The 2D wavelet bases
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functions are constructed via translations and dilations of a tensor product
of univariate wavelets and scaling functions:

φ(t1, t2) = φ(t1)φ(t2)

ψh(t1, t2) = φ(t1)ψ(t2)

ψv(t1, t2) = ψ(t1)φ(t2) (3)

ψd(t1, t2) = ψ(t1)ψ(t2).

The symbols h, v, d in (3) stand for horizontal, vertical and diagonal direc-
tions, respectively. Consider the wavelet atoms

φj,k(t) = 22jφ(2jt1 − k1, 2jt2 − k2)
ψij,k(t) = 22jψi(2jt1 − k1, 2jt2 − k2),

for i = h, v, d and where t = (t1, t2) ∈ R2, and k = (k1, k2) ∈ Z2. Then, any
function X ∈ L2(R2) can be represented as

X(t) =
∑
k

cJ0kφJ0,k(t) +
∑
j>J0

∑
k

∑
i

dij,kψ
i
j,k(t), (4)

where the wavelet coefficients are given by

dij,k = 22j

∫
X(t)ψi(2jt− k)dt. (5)

2.2 A 2D Wavelet-based Multifractal Spectrum

Consider a two-dimensional process or signal X that, at a given time t, is
assumed to be Hölder continuous,

|X(s)−X(t)| = O(||s− t||α), for s→ t,

where α > 0 and || · || is the usual Euclidean norm in R2. Assume that
X admits a representation given by (4). Then, Lemma 2.7 in Riedi (1999)
generalizes to show that

|dij,k| = O(2−jα), j →∞, (6)

where the coefficients dij,k were defined in (5). This suggests that the ele-
ments dij,k can describe the local oscillatory behavior of X. A coarse wavelet
singularity exponents of X can be defined as

wij,k := −1

j
log2 |dij,k|. (7)
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Following Riedi (1999) a wavelet-based local singularity exponent can be ob-
tained from (7)

αi(t) := lim inf
k2−j→t

wij,k, (8)

where k2−j → t means that t = (t1, t2) ∈ [2−jk1, 2
−j(k1+1)]×[2−jk2, 2

−j(k2+
1)], for k = (k1, k2) and j →∞. The index i in (8) corresponds to one of three
directions in detail spaces of 2D wavelet transform: horizontal (h), vertical
(v) or diagonal (d). Smaller values of αi(t) correspond to larger oscillations
in X and thus to more singularity (or irregularity) at time t. Typically, a
process will possess many different singularity strengths. The frequency (in
t) of occurrence of a given singularity strength α is measured by the 2D-MFS,
defined for each direction i = d, h, v as

f i(α) := lim
ε→0

lim inf
j→∞

1

j
log2N

i
j(α, ε), (9)

where
N i
j(α, ε) := # {k : α− ε ≤ wij,k < α + ε}, (10)

for k ∈ {0, . . . , 2j − 1} × {0, . . . , 2j − 1}. The 2D-MFS f i defined as in
(9) is hard to calculate. A practical approach makes use of the theory of
large deviations (Ellis, 1984), where f i would be interpreted as the rate
function of a Large Deviation Principle (Riedi, 1999). For a fixed realization
of X, N i

j(α, ε)/2
2j can be considered as the probability to find a value k

∈ {0, . . . , 2j − 1} × {0, . . . , 2j − 1} such that wij,k ∈ [α− ε, α+ ε]. Typically,
there will be a most frequent value of αi(t), denoted by H, and f i(α) will
reach its maximum at α = H. On the other hand, if α is different from H,
then [α − ε, α + ε] will not contain H for small ε and the chance to observe
exponents wij,k which lie in [α− ε, α+ ε] will decrease exponentially fast with
rate given by f i(α). In this context, the scaling behavior of the moments of
the wavelets coefficients (5) is studied. For every direction i, the partition or
moment scaling function is defined,

τ i(q) := lim inf
j→∞

−1

j
log2 E|dij,k|q. (11)

The partition function (11) describes the limiting behaviour of qth moment
of a typical wavelet coefficient from the level j and direction i. Under some
technical conditions, the multifractal formalism (Riedi, 1999; Riedi et al.
1999) posits that the multifractal spectrum can be calculated via the Legen-
dre transform

f i(α) = f iL(α) := inf
q

[qα− τ i(q)].

It can be shown that f iL(α) = qα− τ i(q) at α = τ
′i(q) provided τ

′′i(q) < 0.
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3 The MFS of a 2D Fractional Brownian Mo-

tion

The fractional Brownian motion (fBm) is arguably the most popular statisti-
cal model in signal and image processing for description of data that scale in
a regular fashion. The fBm has proved useful for modeling various physical
phenomena involving long-range dependence and regular self-similarity. It
is a natural extension (Mandelbrot and van Ness, 1968) of the well-known
Brownian motion and can be defined as the unique Gaussian, zero-mean
process, BH(t), which is self-similar and has stationary increments.

The definition of the fractional Brownian motion can be extended to
higher dimensions along the lines of (Lévy, 1948), where the generalization
of Brownian motion to multiple dimensions was first considered. A 2D-fBm,
BH(t), for t ∈ [0, 1] × [0, 1] and H ∈ (0, 1), is a process with stationary
zero-mean Gaussian increments, for which

BH(at)
d
= aHBH(t), (12)

and where the autocovariance function is given by

E (BH(t)BH(s)) =
σ2

2

(
‖t‖2H + ‖s‖2H − ‖t− s‖2H

)
,

where ‖ · ‖ is the usual Euclidean norm in R2. The index H corresponds to
the Hurst exponent; a higher exponent H corresponds to a more regular fBm
surfaces.

Wavelet coefficients of a 2D-fBm are given by

dj,k = 22j

∫
BH(t)ψ(2jt− k)dt,

where the integral is taken over R2, k = (k1, k2) ∈ Z2, and direction i = d, v
or h. Note that dj,k is L1-normalized which simplifies the property (15) below.
With a change of variable in the previous integral, taking into account the
self-similarity (12) and following Flandrin (1992), it can be shown the wavelet
coefficients have the following properties:

dj,k
d
= dj,0, ∀k (13)

dj,k
d
= 2−jHd0,k, (14)

dj,k ∼ N(0, 2−2jHσψ), (15)
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for all k, j and where σψ is a constant depending only on the wavelet function
ψ. Properties (13)-(15) are called isotropy, scaling and Gaussianity, respec-
tively. It can be seen that the partition function (11) for the 2D-fBm is given
by

τ(q) = qH, q > −1, (16)

where for simplicity, the index i has been dropped.
Next, we describe how statistical estimation of the 2D-fBm may be car-

ried out. Given a realization of the 2D-fBm of size 2J × 2J , and using the
stationarity of the wavelets coefficients {dj,(k1,k2); j = J0, . . . , J − 1, k1, k2 =

0, . . . , 2j − 1}, the sample counterpart of E|dj,k|q is

|dj,(k1,k2)|q =
1

2j

2j−1∑
k1=0

 1

2j

2j−1∑
k2=0

|dj,(k1,k2)|
q


d
= 2−jHq |d0,(k1,k2)|q. (17)

From (11),
2−jτ(q) ∼ E|dj,k|q,

and thus, the partition function (11) can be estimated as the power-law
exponent of the variation of |dj,(k1,k2)|q versus scale 2−j. By weighted linear

regression of log2 |dj,(k1,k2)|q on j between scales j1 and j2 we get

τ̂(q) :=

j2∑
j=j1

aj log2 |dj,(k1,k2)|q,

where the regression weights aj must verify Abry et al. (1999) the two
conditions:

∑
j aj = 0 and

∑
j jaj = 1. Thus, we can estimate f(α) though

a local slope of τ̂(q) at values

α̂(ql) = [τ̂(ql+1)− τ̂(ql)]/q0, ql = lq0

as
f̂(α(ql)) = qlα(ql)− τ̂(ql). (18)

4 The Robust MF Spectra

The robust estimation approach builds on results of Hamilton et al (2011).
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From (15), d0,(k1,k2) is a random variable normally distributed with Ed0,(k1,k2) =
0 and V d0,(k1,k2) = σψ, then for q > −1,

E|d0,(k1,k2)|q = σqψ
2q/2Γ

(
1+q
2

)
√
π

,

from which

V |d0,(k1,k2)|q = σ2q
ψ 2q

(
Γ
(
1+2q
2

)
√
π
−

Γ2
(
1+q
2

)
π

)

is obtained. From the CLT,

|d0,(k1,k2)|q ∼ AN

(
E|d0,(k1,k2)|q,

V |d0,(k1,k2)|q

22j

)
and from (17),

|dj,(k1,k2)|q ∼ AN

(
2−jHqE|d0,(k1,k2)|q, 2−2jHq

V |d0,(k1,k2)|q

22j

)
Finally, by applying Delta’s method,

log2 |dj,(k1,k2)|q ∼ AN

(
−jHq + log2E|d0,(k1,k2)|q, 2−2jHq

V |d0,(k1,k2)|q

22j

(
1

ln 2 2−jHqE|d0,(k1,k2)|q

)2
)
,

which simplifies to

log2 |dj,(k1,k2)|q ∼ AN

(
−jHq + log2E|d0,(k1,k2)|q,

V |d0,(k1,k2)|q

ln2 2 22jE2|d0,(k1,k2)|q

)
,

∼ AN

(
−jHq + log2E|d0,(k1,k2)|q,

1

ln2 2 22j

(
π

Γ
(
1+2q
2

)
Γ2
(
1+q
2

) − 1

))
.

If a weighted linear regression

τ̂ (q) :=

j2∑
j=j1

ωj log2 |dj,(k1,k2)|q,

is proposed to estimate the partition function with
∑
ωj = 0 and

∑
−jωj = 1

(see Gonçalves et al. 1998), then from (16), the estimate is asymptotically
unbiased.

Finally,
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V

(
log2 |dj1,(k1,k2)|q − log2 |dj2,(k1,k2)|q

j1 − j2

)
=

1

(j1 − j2)2 ln2 2

(
π

Γ
(
1+2q
2

)
Γ2
(
1+q
2

) − 1

)
1

HA (22j1 , 22j2)
,

where HA is the harmonic mean. Since weights ωj1,j2 are inverse-proportional
to the variance then

ωj1j2 ∝ (j1 − j2)2HA
(
22j1 , 22j2

)
.

It is somewhat surprising that the weights ωj1j2 do not depend on the
power q.
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