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Overview

®m The topic as in the talk at Coldéquio de Séries Temporais em
Homenagem ao 65° Aniversario de Pedro A. Morettin, June 2007
(Campo de Jordao)
However the material different and new.

B Why Scaling in Data is Important?
m Measures of Scaling — Traditional and Wavelet Based
®m Some New Results: Wavelet Transforms of Images, Robust

Measures of Scaling (with thanks to graduate students and two
recent visiting scholars).
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Frontal component of wind velocity (56Hz) measured at Duke
Forrest, Durham, NC.




“Ubiquitous” — The Epithet of Scaling

Atmospheric Turbulence

Frontal component of wind velocity (56Hz) measured at Duke
Forrest, Durham, NC.
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(Left) U Velocity Component; (Middle) Scaling in the Fourier
Domain; (Rifgt) Scaling in the Wavelet Domain.
5/3=2H +1> H=1/3]
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A DNA molecule consists of long complementary double helix of
purine nucleotides (denoted as A and G) and pyrimidine
nucleotides (denoted as C and T). [A,G — +1; C, T — —1]




Scaling in DNA

A DNA molecule consists of long complementary double helix of
purine nucleotides (denoted as A and G) and pyrimidine
nucleotides (denoted as C and T). [A,G — +1; C,T — —1]

50 -5 slope=-2.24
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(Left) 8196-long DNA Walk for Spider Monkey, from EMLB
Nucleotide Sequence Alignment DNA Database; (Right) Wavelet
Scaling With Slope —2.24. [2.24 =2H + 1 — H = 0.62]
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Hong Kong Dollar (HKD) versus US Dollar (USD) as reported by
the ONADA Company between 24 March 1995 and 1 November
2000.




Exchange Rates

Hong Kong Dollar (HKD) versus US Dollar (USD) as reported by
the ONADA Company between 24 March 1995 and 1 November
2000.

ime nsants 0 1 2 3 4 5 Dyadic Scaes

(Left) Exchange Rates HKD per USD; (Right) Scaling behavior in
the Fourier domain, and (c) in the wavelet domain.
[1.80 = 2H + 1 — H = 0.455]
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Duration of the gait cycle in human walk. Measurements on a
healthy subject who walked for 1 hour at normal, slow and fast
paces.




The Stride Interval
Duration of the gait cycle in human walk. Measurements on a
healthy subject who walked for 1 hour at normal, slow and fast

paces.

(Left) Gait timing for Slow, Normal and Fast Walk; (Middle)
Scaling in the Fourier domain; (Right) In wavelet domain. Slow,
normal, and fast stride intervals have slopes of -0.45, -0.4, and

-0.61 respectively.
[{0.45|0.4]0.61} = 2H — 1 — H = {0.725|0.7]0.805}]
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Other Examples

m Various Geophysical High Frequency Measurements (wind
velocities, temperatures, chemical and pollutant concentrations,
etc.)

m Biometric Responses (brain potentials, ocular responses, etc)

® Economic Indices (stock markets, currency exchange, ultra-high
frequency data, etc)

m Internet Measurements (internet usage, package sizes, etc)
m Industrial Measurements (high speed manufacturing, etc)

m Astronomy (spatial distributions of stars, astronomical
measurements, etc)

B Medicine. Brain and Cancer Research (medical imaging,
ultrasound, mass-spectrometry, etc)

m Art (paintings, writings, etc)

Vidakovic, B. (GaTech) Scaling by Wavelets October 19-21, 2012 7/ 36






o If the observations look like “noise” — standard statistical
modeling techniques inadequate.




Why Should One Care About Scaling?

Because ...

o If the observations look like “noise” — standard statistical
modeling techniques inadequate.

@ In denoising applications when there is superposition of two

noises, white and colored, scaling helps in filtering.
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Why Should One Care About Scaling?

Because ...

o If the observations look like “noise” — standard statistical
modeling techniques inadequate.

@ In denoising applications when there is superposition of two
noises, white and colored, scaling helps in filtering.

@ Need to simulate processes that scale (queueing systems,
internet, surrogate data in geosciences, wavestrapping,
bootstrap tests, etc.)
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Why Should One Care About Scaling?

Because ...

o If the observations look like “noise” — standard statistical
modeling techniques inadequate.

@ In denoising applications when there is superposition of two
noises, white and colored, scaling helps in filtering.

@ Need to simulate processes that scale (queueing systems,
internet, surrogate data in geosciences, wavestrapping,
bootstrap tests, etc.)

@ Summaries of fractal/multifractal spectra as descriptors/data
summaries.

v
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@ Monofractals, Several Popular Theoretical Models

@ Regular: Plot of Log(AverageEnergy) versus Log(Scale)
is a straight line.

@ In Wavelet Terms: Plot of Log2(LevelwiseMean(Wavelet

Coefficients Squared)) versus Level Number is a
straight line.

e Type I (Local Monofractals, Time- or Space-Dependent
Hurst Exponent)

e Type II (Multifractals, Distribution of Irregularity Indices.
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Irregular Scaling: mfBm(H;)

Multifractional Brownian Motions generated with (a)
H;=08t+0.1; (b) H,=0.1+3.2(t—05)?, 0<t<1. His
estimated by Local Quadratic Variations of sample paths
(Couerjolly, PhD Thesis 2000).
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Irregular Scaling: mfBm(H;)

Multifractional Brownian Motions generated with (a)
H,=0.8t+0.1; (b) H,=0.1+32(t—0.5)% 0<t<1. His
estimated by Local Quadratic Variations of sample paths
(Couerjolly, PhD Thesis 2000).

v
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Irregular Scaling: mf spectra

Turbulence (multifractal) and fBm with H = 1/3 (monofractal)
are indistinguishable wrt the second order properties. Testing for
Monoftactality (Sky Lee, PhD Thesis 2010)
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Irregular Scaling: mf spectra

Turbulence (multifractal) and fBm with H = 1/3 (monofractal)
are indistinguishable wrt the second order properties. Testing for
Monoftactality (Sky Lee, PhD Thesis 2010)
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Model

@ Random process X (), t > 0 is self-similar, with
self-similarity index H (H-ss) if and only if there exists

H > 0 such that for any a > 0, X (at) < a? X (t).

Vidakovic, B. (GaTech) Scaling by Wavelets October 19-21, 2012

12 / 36



Model

@ Random process X (), t > 0 is self-similar, with
self-similarity index H (H-ss) if and only if there exists
H > 0 such that for any a > 0, X (at) < a? X (t).

@ Standard Brownian Motion B(t) is 1/2-ss since the process
W (t) = 1/y/aB(at) is standard Brownian motion, as well.

vy

Vidakovic, B. (GaTech) Scaling by Wavelets October 19-21, 2012 12 / 36



Model

@ Random process X (), t > 0 is self-similar, with
self-similarity index H (H-ss) if and only if there exists
H > 0 such that for any a > 0, X (at) < a? X (t).
e Standard Brownian Motion B(t) is 1/2-ss since the process
W (t) = 1/y/aB(at) is standard Brownian motion, as well.
@ Let X(t),t € R be H — ss process. If its increments
X (t+ h) — X (t) are stationary, X (¢) is called H — sssi
process.
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Model
@ Random process X (t), t > 0 is self-similar, with
self-similarity index H (H-ss) if and only if there exists
H > 0 such that for any a > 0, X (at) < a? X (t).

@ Standard Brownian Motion B(t) is 1/2-ss since the process
W (t) = 1/y/aB(at) is standard Brownian motion, as well.

@ Let X(t),t € R be H — ss process. If its increments
X(t+ h) — X (t) are stationary, X (t) is called H — sssi
process.

e fBm(H) is a zero mean Gaussian process for which

_ EBa(1)P

EBu(t)Bu(s) = =221 [[t4 + [sf* — |t = 5]

where E|By(1)> = %

ot
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@ Random process X (t), t > 0 is self-similar, with
self-similarity index H (H-ss) if and only if there exists
H > 0 such that for any a > 0, X (at) < a? X (t).

@ Standard Brownian Motion B(t) is 1/2-ss since the process
W (t) = 1/y/aB(at) is standard Brownian motion, as well.

@ Let X(t),t € R be H — ss process. If its increments
X(t+ h) — X (t) are stationary, X (t) is called H — sssi
process.

e fBm(H) is a zero mean Gaussian process for which
_ EBa(1)P

EBu(t)Bu(s) = =221 [[t4 + [sf* — |t = 5]

where E|By(1)> = %

e fBm(H) = unique Gaussian H — sssi process.

ot
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Fractional Brownian Field (2D-fBm)

A 2D-fBm, Bpy(t), for t € RT™ x RT and H € (0, 1), is a process

with stationary zero-mean Gaussian increments,

By(at) < a” By(t),
2
_ %1

IE [By (t)Bu(s)] = - (I61* + [Is[* — [t — s[|**)

2

B. Pesquet-Popescu and J.L. Vehel, 2002
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Fractional Brownian Field (2D-fBm)

A 2D-fBm, By(t), for t € R x RT and H € (0,1), is a process

with stationary zero-mean Gaussian increments,

Bir(at) £ o By (t),

Ok

IE [By (t)Bu(s)] = - (I61* + [Is[* — [t — s[|**)

2

B. Pesquet-Popescu and J.L. Vehel, 2002

Figure: Fractional Brownian fields for (Left) H = 1/3 and (Right) H = 3/4.

Vidakovic, B. (GaTech) Scaling by Wavelets

October 19-21, 2012

13 / 36






@ Methods Based on Contrasting Various Estimators of
Variance
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(Whittle, Periodogram, ...)
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Estimation of H

@ Methods Based on Contrasting Various Estimators of
Variance

Methods Based on Various Aspects of Fourier Spectra
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Methods Based on Zero-Level-Crossings of Paths
Methods Based on Quadratic Variations
@ Methods Based on Convex Rearrangements

e ¢

Multiscale Paradigm

o Identify a hierarchy of scales in the multiscale decomposition
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Estimation of H

@ Methods Based on Contrasting Various Estimators of
Variance

Methods Based on Various Aspects of Fourier Spectra
(Whittle, Periodogram, ...)

Methods Based on Zero-Level-Crossings of Paths
Methods Based on Quadratic Variations
@ Methods Based on Convex Rearrangements

e ¢

Multiscale Paradigm
o Identify a hierarchy of scales in the multiscale decomposition
o Fit the linear propagation of “log-energies” across the scales
@ Transform the slopes of the fits to the regularity indices

e “Waveletize” methods that use filtering (Quadratic
Variations, Convex Rearrangements, Lorenzians, ...

v
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In the rest of the talk...
@ 2-D Scale Mixing Wavelet Transform

o Estimating H from Scale-Mixing Spectra
@ Robust Estimator of H (Theil-Sen-Type Estimator)
@ Application: Breast Cancer Diagnostics

@ An Approach Based on Convex Rearrangements (If time
permits)
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1D Wavelet Transform via a Matrix

@ Given the wavelet basis (via its filter k), form an orthogonal matrix W

of size N x N so that for signal y, d=W - y.

® Matrix W = W; is defined iteratively (J is the depth of transform)

Wi =
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1D Wavelet Transform via a Matrix

@ Given the wavelet basis (via its filter k), form an orthogonal matrix W

of size N x N so that for signal y, d=W - y.

® Matrix W = W; is defined iteratively (J is the depth of transform)

_Hl - |:
G1:|a WQ_

Wi =

@ Given filter h = (ho, k1, . ..

Hs
&
Go

G1

H>
Gs ] e
Gy

)

- Hy

), Hy, a matrix with (¢, j)th element

hs, for s = (N — 1) 4 (i — 1) — 2(j — 1) modulo 277*+1,

@ Matrix Gy, formed as Hy but with the QM filter g.
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Scale-mixing Transform

@ Let A be an image of dyadic size, 2" x 2. Form a wavelet matrix
W of the same size.

@ The object W A’ represents a matrix in which columns are wavelet
transformed rows of A. If the same is repeated with the rows of
W A’ the result is

B=WWA) =WAW'.
Matrix B is called scale mixing wavelet transform of A.
@ The inverse is straightforward: A = W’'BW.
@ “Energy” preserved: E = trace(AA’) = trace(BB’).

@ Easy to generalize to different wavelets (different left- and
right-hand side matrices W1, W5) and to rectangular sizes of A.

v

Vidakovic, B. (GaTech) Scaling by Wavelets October 19-21, 2012 17 / 36



Tessellations by 2D WT: Traditional, Scale-mixing,
and a Mix

100) 100] 100)

PO % w0 mo w0 2 S w0 0

Figure: Tiling images by (Left) Traditional 2-D Wavelet Transform;
(Middle) Scale-mixing Wavelet Transform; and (Right) Generalized
2-D Wavelet Transform
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Tessellations by 2D WT: Traditional, Scale-mixing,

and a Mix

s

PO S w0 0

Figure: Tiling images by (Left) Traditional 2-D Wavelet Transform;
(Middle) Scale-mixing Wavelet Transform; and (Right) Generalized

2-D Wavelet Transform

e Any hierarchy of self-similar multiresolution subspaces leads to

a spectra.

e For traditional wavelet transforms three spectra usually defined
as: horizontal, vertical, and diagonal (Nicolis et al, 2011).

Vidakovic, B. (GaTech) Scaling by Wavelets

jiis

oo 10

v

October 19-21, 2012 18 / 36



Hierarchies in Scale-mixing 2-D WT

~

50- A RN

150-

200-

250-

Figure: Hierarchies (j,j + s) for s =0+ 1

e Given an isotropic random field, all hierarchies (4,5 + s), s fixed lead to the

same power law.
® If one component is fixed, (jo,j) or (jo,7) the power law exist, but depends
on size matrix A and jo. Empirically if jy is the finest level of detail, slope in

the spectra ~ —H.
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If dijjvs) (= dijtsikrke)s J = Jo,---,J1; s fixed), is a wavelet
coefficient in a scale-mixing decomposition of 2D fBm

IOgQE [d%j,j—i—s)] = —(2H -+ 2)j -+ Cz/;,s,H
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Result (Ramirez Cobo et al., 2011)

If dijjts) (= dijtsikrks), J = Jos---,J1; s fixed), is a wavelet
coefficient in a scale-mixing decomposition of 2D fBm

logQE[d(“Jrs] = —(2H +2)j+ Cpom

Hurst exponent can be estimated from the regression slope.

Fitting the Linear Regression

@ Average d? over the level, take the logs (mean-first) [Abry
and collaborators] (j,log, d?)

@ Take the logs of d?, then average over the level (log-first)
[Taqqu and collaborators] (7, log, d2)

o Average a few d?, take the logs, take average

(mean-log-mean) [Soltani and collaborators] (7, log, d_f)

v
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Estimating Slope: Approaches
@ OLS — wrong methodology — but works OK.
@ Weighted LS (Abry & Veitch, 1999)
Y = logd_]z +1/(n;log2), n; is the number of ds in level j.
o= Zj w;y;, where w; = (Soj — S1)/(S0S2 — S)
Se=,4%/0, k=0,1,2 and 07 = 2/(n; log” 2)
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Estimating Slope: Approaches
@ OLS — wrong methodology — but works OK.
@ Weighted LS (Abry & Veitch, 1999)
= logﬁ +1/(n;log2), n; is the number of ds in level j.
sl = >, wiy;, where w; = (Soj — S1)/(S0S2 — SF)
S ZJ j*/o?, k=0,1,2 and 0? = 2/(n;log”2)

Theil-Sen-Type Estimator (Hamilton et al, 2011)

e Find all pairwise slopes s;; = (log d2 log d2)/(j — 4)
generated by two points (4, log d?) and (4, log ),
jmin <1 <j < jmar-

o Estimate the slope as a weighted average of pairwise slopes
corrected for the bias.

@ What are optimal weights?

v
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Derivation of T'S-Type Estimator

e Start with m-D fBm By (w,t) and transform it to the wavelet
domain. Consider the main diagonal hierarchy (s = 0), a
multiresolution ladder indexed by j.

d; ~ N (0,27 CHFTmi 52,
@ The coefficients d; within the level j are (typically)
considered approximately independent (Flandrin, 1992). At

level j there are 2™ coefficients. Thus,

72 4 5—(2H+2m)j 2. 2
@ Expectation and variance of average level-energies

Ed? = 2~ CHtmig?  Vard? = 27 *=3mitlt
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1
Ep(X) ~ o(IEX) + égo"(]EX) - Var X
Var o(X) ~ (¢'(IEX))*Var X.

When ¢ is logarithm for base 2, then

1

+ log, o2
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Ep(X) ~ o(IEX) + égo"(]EX) - Var X
Var o(X) ~ (¢'(IEX))*Var X.

When ¢ is logarithm for base 2, then

1

+ log, o2

Var 10g2 d? = W
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@ Variance of the pairwise slope s;; is

log, d2 — log, d2
Vars;; = Var ( 52 J ,g2 Z>
j—1
2 1/2m3 4 1/2m
(log 2)? (J—14)?
@ Take weights w;; inverse-proportional to the variance of s;;,

wyj o< (i — )% x HA(2™ 2™, wa—l

1<J

where H A is the harmonic average of level sizes.

o n 1 1 1
Sii =8+ 77— | 57 — .
g 7 (j—i)log2 \2mi  2mi

Theil-Sen-Type Estimator: Slope estimated by >, ; w;sj;
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Data: Mammogram Images

o Digitized mammograms from University South Florida
Digital Database for Screening Mammography (DDSM)

@ Gold standard was biopsy

@ 105 normal and 72 cancer craniocaudal (CC) images

@ A subimage of size 1024 x 1024 taken from each image
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Classification

1 00-@no

@ Observations.
0.9 — Logistic Fit

L L T L -4 -2 0
S 0 T e — f Linear Predictor: by + b, Hy

Figure: (Left) Estimated density of H obtained from 105 controls (solid line)
and 72 cancer cases (dotted line); (Right) Logistic fit
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Classification

@ Observations.

0.9 — Logistic Fit

2 £03

)-GO

L L T L -4 -2 0
4 + e | Linear Predictor: by + b, Hy

4

Figure: (Left) Estimated density of H obtained from 105 controls (solid line)
and 72 cancer cases (dotted line); (Right) Logistic fit

o Symmlet 8 tap, 5 < 7 <8, Found H_,, H, H,; corresponding
to s =0, %1.
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Classification

@ Observations.

0.9 — Logistic Fit

£03

)-GO
-4 -2 0 2 4
Linear Predictor: by + by Hy

Figure: (Left) Estimated density of H obtained from 105 controls (solid line)
and 72 cancer cases (dotted line); (Right) Logistic fit

o Symmlet 8 tap, 5 < 7 <8, Found H_,, H, H,; corresponding
to s =0, %1.
@ 120 randomly selected as training, 57 as validation set
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Classification

@ Observations.

0.9 — Logistic Fit

£03

)-GO
-4 -2 0 2 4
Linear Predictor: by + b, Hy

Figure: (Left) Estimated density of H obtained from 105 controls (solid line)
and 72 cancer cases (dotted line); (Right) Logistic fit

o Symmlet 8 tap, 5 < 7 <8, Found H_,, H, H,; corresponding
to s =0, %1.

@ 120 randomly selected as training, 57 as validation set

@ The most informative was diagonal H, adding descriptors

H_,, H., improves classification, but minimally.
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Average error rate from M = 5000 runs J
| Method | Error [%] |
OLS 39.9
Abry-Veitch 24.1
Theil-Sen 25.4
Modified Theil-Sen* 18.2
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Average error rate from M = 5000 runs J
| Method | Error [%] |
OLS 39.9
Abry-Veitch 24.1
Theil-Sen 25.4
Modified Theil-Sen* 18.2
“Modified Theil-Sen has weights
oc 27H(j — )2 HA(2%,2%)
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Some Observations
@ Sampling density of Y = log, d_§ for fixed H, j, m, and o2 is

g1

log 2 ou+2(H+m)j—1\ 2" Qu+2(H+m)j—1
) = gy () |
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Some Observations
@ Sampling density of Y = lode_g for fixed H, j, m, and o2 is

log ) 2y+2(H+m)j—1 2mi—t 2y+2(H+m)j—1
= ()

@ Possible distribution of pairwise slopes, Bayesian approach
with prior on H, or more generally on (H,c?).

v
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Some Observations
@ Sampling density of Y = lode_g for fixed H, j, m, and o2 is

log ) 2y+2(H+m)j—1 2mi—t 2y+2(H+m)j—1
= ()

@ Possible distribution of pairwise slopes, Bayesian approach
with prior on H, or more generally on (H,o?).
) . d?, .
@ Since 22H0 Z)dj—g- ~ Foj g, for df. = 35 clevel j @ and nj is

the number of &’s in level §, (1 — @)100% CI for H is

d?, d?,
1Og2 <Fnj,ni,o¢/2 X d%) 10g2 (Fnj,ni,l—a/Z X d%)
3o ge
2(j —4) ’ 2(j —4)
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Multifractal Spectra

m Given «,
log., M
f(a) = lim lim %
e—0 j—o00 i
My = #{k| 27709 < |dy,| <2777 } /27,

m Partition function:

S(q) = lim log, IE|d; x|*.
Jj—00
The Legendre transform of a partition function S(q) is defined as
fi(e) = inf{go — 5(g)}.

B f;(a) converges to the true multifractal spectrum f(«)
(Ellis, 1984).

v
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Multifractal Spectra

@ Gongcalves, Reidi, and Baraniuk (1998) “Asilomar Paper”
discussed discrete wavelet transform Legendre spectra as an
approximation to multifractal spectra.
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Multifractal Spectra

@ Gongcalves, Reidi, and Baraniuk (1998) “Asilomar Paper”
discussed discrete wavelet transform Legendre spectra as an
approximation to multifractal spectra.

@ In the discrete wavelet transform the “energies” are
generalized, d%, = |d;i|?, ¢ > —1.
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Vidakovic, B. (GaTech) Scaling by Wavelets October 19-21, 2012 30 / 36
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@ Gongcalves, Reidi, and Baraniuk (1998) “Asilomar Paper”
discussed discrete wavelet transform Legendre spectra as an
approximation to multifractal spectra.

@ In the discrete wavelet transform the “energies” are
generalized, d5, = |d;|?, ¢ > —1.
e Slope (partition function) S(q) found on pairs (7, log, |d;|9)

@ Define Legendre spectra as («a, f) with a(q) = S’(¢) and
f(q) = qalq) — S(q).
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Multifractal Spectra

@ Gongcalves, Reidi, and Baraniuk (1998) “Asilomar Paper”
discussed discrete wavelet transform Legendre spectra as an
approximation to multifractal spectra.

@ In the discrete wavelet transform the “energies” are
generalized, d5, = |d;|?, ¢ > —1.
e Slope (partition function) S(q) found on pairs (7, log, |d;|9)

@ Define Legendre spectra as («a, f) with a(q) = S’(¢) and
f(q) = qalq) — S(q).

fla(@)

Summaries:
Spectral Mode = H
Left Slope, Right Slope
Left Tangent, Right Tangent
Broadness
«g, and ag

o
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e Theil-Sen-type estimator for slopes S(g),q > —1 uses the same
weights as S(2).

e The variance of <10g2 |d;|9 — log, \di\q> /(j — 1) does depend on ¢
but via a multiplicative factor free of j.
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e Theil-Sen-type estimator for slopes S(g),q > —1 uses the same

weights as S(2).

e The variance of (log2 |d;|9 — log, W) /(j — 1) does depend on ¢

but via a multiplicative factor free of j.

0. 1.4
—fBm

0 1.2
-0.05 1
~0.1] 08

-0.15]
06

-0.

0.4

-0.25
02
o 05 1 15 0

a(a) 0 1 2 3 4 5
Signal SM LS RS LT RT B

Turb 0.3382 0.7331 -0.3229 2.7500 -0.5400 0.8922
fBm 0.3422 1.4845 -0.5704 3.7400 -0.8700 0.4853
B Signals with LS < 1.2144 significantly different from

monofractals.
WS = 1.4845,5% = 1.2144, LS = 0.7331
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Let X(t), t > 0 be Gaussian process satisfying .4 and let g be a
wavelet high-pass filter (QM counterpart of h)

" Vidakovic, B. (GaTech) ~ Scaling by Wavelets  October 19-21, 2012 32 / 36



Wavelet Convex Rearrangements

Let X(t), t > 0 be Gaussian process satisfying .4 and let g be a
wavelet high-pass filter (QM counterpart of h)
Define g-convex rearrangement of X (t) as

|Nt|—1
VXgn(®) =X0)+ ) Youw + IVt — [Nt))Yg (vejnys

where {Yj (0 N . Yg,(N ~)} is order statistics for the sequence
Yy (£) =3y gnX (52), for k=0,1,...,N—1.
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Wavelet Convex Rearrangements

Let X(t), t > 0 be Gaussian process satisfying .4 and let g be a
wavelet high-pass filter (QM counterpart of h)
Define g-convex rearrangement of X (t) as

|Nt|—1
VX n(t) Z Yo ny + (Nt = [Nt)) Y, (veg,
where {Yg 0.3y, - ., Yg,(v—1:n)} is order statistics for the sequence
Y, (£) :Zflzoan(k_T"),for k=0,1,...,N— 1.

Let g? be dilation of filter g obtained by inserting d — 1 zeros
between non-zero filter taps. For example, for

g=g'={1/v2 —1/V?2} the 3-dilated filter is
g ={1/v2 00 —1/V2}.
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Theorem
Let

VngQ 7N(t0)

D(N, dy, dy, ty) = 92N 0
(N, da, 2, o) VX0 y(to)
Then for any to € [0, 1], and integers dy, and ds,

IOg |]]D(N, dl, dQ, t0)|
log(dy/d)

— H, a.s.

Idea of proof:
Vx t - 3 9
St 10) = [0 (s =~ esp {3070 e

and ngt)) = (s/t)1.
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Figure: (Left) 10 runs, n = 1024, d; = 1 and dy = 6. Symmlet 8 tap
filter used. (Right) Single run but Daubechies 4-20 tap filters used
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Conclusions

o A case for the importance od scaling
assessment made

o Spectra from scale-mixing 2D wavelet
transform

o An overview of a robust estimator of scaling
presented

o Illustration on mammogram medical
diagnostics
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