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Overview

The topic as in the talk at Colóquio de Séries Temporais em
Homenagem ao 65◦ Aniversário de Pedro A. Morettin, June 2007
(Campo de Jordao)
However the material different and new.
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Overview

The topic as in the talk at Colóquio de Séries Temporais em
Homenagem ao 65◦ Aniversário de Pedro A. Morettin, June 2007
(Campo de Jordao)
However the material different and new.

Why Scaling in Data is Important?

Measures of Scaling – Traditional and Wavelet Based

Some New Results: Wavelet Transforms of Images, Robust
Measures of Scaling (with thanks to graduate students and two
recent visiting scholars).
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“Ubiquitous” – The Epithet of Scaling

Atmospheric Turbulence

Frontal component of wind velocity (56Hz) measured at Duke
Forrest, Durham, NC.
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(Left) U Velocity Component; (Middle) Scaling in the Fourier
Domain; (Rifgt) Scaling in the Wavelet Domain.
[5/3 = 2H + 1 → H = 1/3]
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Scaling in DNA
A DNA molecule consists of long complementary double helix of
purine nucleotides (denoted as A and G) and pyrimidine
nucleotides (denoted as C and T). [A,G → +1; C, T → −1]
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(Left) 8196-long DNA Walk for Spider Monkey, from EMLB
Nucleotide Sequence Alignment DNA Database; (Right) Wavelet
Scaling With Slope −2.24. [2.24 = 2H + 1 → H = 0.62]
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Exchange Rates

Hong Kong Dollar (HKD) versus US Dollar (USD) as reported by
the ONADA Company between 24 March 1995 and 1 November
2000.
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(Left) Exchange Rates HKD per USD; (Right) Scaling behavior in
the Fourier domain, and (c) in the wavelet domain.
[1.89 = 2H + 1 → H = 0.455]
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The Stride Interval
Duration of the gait cycle in human walk. Measurements on a
healthy subject who walked for 1 hour at normal, slow and fast
paces.
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Slow (−0.45)
Normal (−0.40)
Fast (−0.61)

(Left) Gait timing for Slow, Normal and Fast Walk; (Middle)
Scaling in the Fourier domain; (Right) In wavelet domain. Slow,
normal, and fast stride intervals have slopes of -0.45, -0.4, and
-0.61 respectively.
[{0.45|0.4|0.61} = 2H − 1 → H = {0.725|0.7|0.805}]
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Other Examples
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Other Examples

Various Geophysical High Frequency Measurements (wind
velocities, temperatures, chemical and pollutant concentrations,
etc.)
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Other Examples

Various Geophysical High Frequency Measurements (wind
velocities, temperatures, chemical and pollutant concentrations,
etc.)

Biometric Responses (brain potentials, ocular responses, etc)

Economic Indices (stock markets, currency exchange, ultra-high
frequency data, etc)

Internet Measurements (internet usage, package sizes, etc)

Industrial Measurements (high speed manufacturing, etc)

Astronomy (spatial distributions of stars, astronomical
measurements, etc)

Medicine. Brain and Cancer Research (medical imaging,
ultrasound, mass-spectrometry, etc)

Art (paintings, writings, etc)
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Why Should One Care About Scaling?

Because ...
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Why Should One Care About Scaling?

Because ...
If the observations look like “noise” – standard statistical
modeling techniques inadequate.

In denoising applications when there is superposition of two
noises, white and colored, scaling helps in filtering.

Need to simulate processes that scale (queueing systems,
internet, surrogate data in geosciences, wavestrapping,
bootstrap tests, etc.)

Summaries of fractal/multifractal spectra as descriptors/data
summaries.
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Types of Scaling

Regular Scaling
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Regular: Plot of Log(AverageEnergy) versus Log(Scale)
is a straight line.
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Types of Scaling
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Monofractals, Several Popular Theoretical Models

Regular: Plot of Log(AverageEnergy) versus Log(Scale)
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Coefficients Squared)) versus Level Number is a
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Irregular Scaling

Type I (Local Monofractals, Time- or Space-Dependent
Hurst Exponent)
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Types of Scaling

Regular Scaling
Monofractals, Several Popular Theoretical Models

Regular: Plot of Log(AverageEnergy) versus Log(Scale)
is a straight line.

In Wavelet Terms: Plot of Log2(LevelwiseMean(Wavelet
Coefficients Squared)) versus Level Number is a
straight line.

Irregular Scaling

Type I (Local Monofractals, Time- or Space-Dependent
Hurst Exponent)

Type II (Multifractals, Distribution of Irregularity Indices.
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Irregular Scaling: mfBm(Ht)

Multifractional Brownian Motions generated with (a)
Ht = 0.8t+ 0.1; (b) Ht = 0.1 + 3.2(t− 0.5)2, 0 < t < 1. Ht is
estimated by Local Quadratic Variations of sample paths
(Couerjolly, PhD Thesis 2000).
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Irregular Scaling: mf spectra

Turbulence (multifractal) and fBm with H = 1/3 (monofractal)
are indistinguishable wrt the second order properties. Testing for
Monoftactality (Sky Lee, PhD Thesis 2010)
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Model
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Model
Random process X(t), t ≥ 0 is self-similar, with
self-similarity index H (H-ss) if and only if there exists

H > 0 such that for any a > 0, X(at)
d
= aHX(t).
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Standard Brownian Motion B(t) is 1/2-ss since the process
W (t) = 1/

√
aB(at) is standard Brownian motion, as well.
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H > 0 such that for any a > 0, X(at)
d
= aHX(t).

Standard Brownian Motion B(t) is 1/2-ss since the process
W (t) = 1/

√
aB(at) is standard Brownian motion, as well.

Let X(t), t ∈ R be H − ss process. If its increments
X(t+ h)−X(t) are stationary, X(t) is called H − sssi
process.

Vidakovic, B. (GaTech) Scaling by Wavelets October 19-21, 2012 12 / 36



Model
Random process X(t), t ≥ 0 is self-similar, with
self-similarity index H (H-ss) if and only if there exists

H > 0 such that for any a > 0, X(at)
d
= aHX(t).

Standard Brownian Motion B(t) is 1/2-ss since the process
W (t) = 1/

√
aB(at) is standard Brownian motion, as well.

Let X(t), t ∈ R be H − ss process. If its increments
X(t+ h)−X(t) are stationary, X(t) is called H − sssi
process.

fBm(H) is a zero mean Gaussian process for which

EBH(t)BH(s) =
E|BH(1)|2

2

[
|t|2H + |s|2H − |t− s|2H

]
,

where E|BH(1)|2 = Γ(2−2H) cos(πH)
πH(1−2H)

.
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self-similarity index H (H-ss) if and only if there exists

H > 0 such that for any a > 0, X(at)
d
= aHX(t).

Standard Brownian Motion B(t) is 1/2-ss since the process
W (t) = 1/

√
aB(at) is standard Brownian motion, as well.

Let X(t), t ∈ R be H − ss process. If its increments
X(t+ h)−X(t) are stationary, X(t) is called H − sssi
process.

fBm(H) is a zero mean Gaussian process for which

EBH(t)BH(s) =
E|BH(1)|2

2

[
|t|2H + |s|2H − |t− s|2H

]
,

where E|BH(1)|2 = Γ(2−2H) cos(πH)
πH(1−2H)

.

fBm(H) ≡ unique Gaussian H − sssi process.
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Fractional Brownian Field (2D-fBm)
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Fractional Brownian Field (2D-fBm)

A 2D-fBm, BH(t), for t ∈ R
+ × R

+ and H ∈ (0, 1), is a process
with stationary zero-mean Gaussian increments,

BH(at)
d
= aHBH(t),

IE [BH(t)BH(s)] =
σ2
H

2

(
‖t‖2H + ‖s‖2H − ‖t− s‖2H

)
.

B. Pesquet-Popescu and J.L. Vehel, 2002
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Figure: Fractional Brownian fields for (Left) H = 1/3 and (Right) H = 3/4.
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Estimation of H
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Estimation of H
Methods Based on Contrasting Various Estimators of
Variance
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Estimation of H
Methods Based on Contrasting Various Estimators of
Variance

Methods Based on Various Aspects of Fourier Spectra
(Whittle, Periodogram, ...)
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Estimation of H
Methods Based on Contrasting Various Estimators of
Variance

Methods Based on Various Aspects of Fourier Spectra
(Whittle, Periodogram, ...)

Methods Based on Zero-Level-Crossings of Paths

Methods Based on Quadratic Variations

Methods Based on Convex Rearrangements

Multiscale Paradigm
Identify a hierarchy of scales in the multiscale decomposition

Fit the linear propagation of “log-energies” across the scales

Transform the slopes of the fits to the regularity indices

“Waveletize” methods that use filtering (Quadratic
Variations, Convex Rearrangements, Lorenzians, ...
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In the rest of the talk...
2-D Scale Mixing Wavelet Transform

Estimating H from Scale-Mixing Spectra

Robust Estimator of H (Theil-Sen-Type Estimator)

Application: Breast Cancer Diagnostics

An Approach Based on Convex Rearrangements (If time
permits)
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1D Wavelet Transform via a Matrix

Given the wavelet basis (via its filter h), form an orthogonal matrix W
of size N ×N so that for signal y, d = W · y.
Matrix W = WJ is defined iteratively (J is the depth of transform)

W1 =

[
H1

G1

]
, W2 =



[

H2

G2

]
·H1

G1


 ,

W3 =






[

H3

G3

]
·H2

G2


 ·H1

G1


 , . . .
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1D Wavelet Transform via a Matrix

Given the wavelet basis (via its filter h), form an orthogonal matrix W
of size N ×N so that for signal y, d = W · y.
Matrix W = WJ is defined iteratively (J is the depth of transform)

W1 =

[
H1

G1

]
, W2 =



[

H2

G2

]
·H1

G1


 ,

W3 =






[

H3

G3

]
·H2

G2


 ·H1

G1


 , . . .

Given filter h = (h0, h1, . . . ), Hk a matrix with (i, j)th element

hs, for s = (N − 1) + (i− 1)− 2(j − 1) modulo 2J−k+1.

Matrix Gk formed as Hk but with the QM filter g.
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Scale-mixing Transform

Let A be an image of dyadic size, 2n × 2n. Form a wavelet matrix
W of the same size.

The object WA′ represents a matrix in which columns are wavelet
transformed rows of A. If the same is repeated with the rows of
WA′ the result is

B = W (WA′)′ = WAW ′.

Matrix B is called scale mixing wavelet transform of A.

The inverse is straightforward: A = W ′BW.

“Energy” preserved: E = trace(AA′) = trace(BB′).

Easy to generalize to different wavelets (different left- and
right-hand side matrices W1,W2) and to rectangular sizes of A.
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Tessellations by 2D WT: Traditional, Scale-mixing,
and a Mix
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Figure: Tiling images by (Left) Traditional 2-D Wavelet Transform;
(Middle) Scale-mixing Wavelet Transform; and (Right) Generalized
2-D Wavelet Transform
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• Any hierarchy of self-similar multiresolution subspaces leads to
a spectra.
• For traditional wavelet transforms three spectra usually defined
as: horizontal, vertical, and diagonal (Nicolis et al, 2011).
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Hierarchies in Scale-mixing 2-D WT

50
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150150
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50 100 150 200 250

Figure: Hierarchies (j, j + s) for s = 0± 1

• Given an isotropic random field, all hierarchies (j, j + s), s fixed lead to the

same power law.

• If one component is fixed, (j0, j) or (j0, j) the power law exist, but depends

on size matrix A and j0. Empirically if j0 is the finest level of detail, slope in

the spectra ≈ −H .
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Result (Ramı́rez Cobo et al., 2011)

If d(j,j+s) (= d(j,j+s;k1,k2), j = j0, . . . , j1; s fixed), is a wavelet
coefficient in a scale-mixing decomposition of 2D fBm

log2 E
[
d2(j,j+s)

]
= −(2H + 2)j + Cψ,s,H
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Result (Ramı́rez Cobo et al., 2011)

If d(j,j+s) (= d(j,j+s;k1,k2), j = j0, . . . , j1; s fixed), is a wavelet
coefficient in a scale-mixing decomposition of 2D fBm

log2 E
[
d2(j,j+s)

]
= −(2H + 2)j + Cψ,s,H

Hurst exponent can be estimated from the regression slope.

Fitting the Linear Regression

Average d2 over the level, take the logs (mean-first) [Abry

and collaborators] (j, log2 d
2
j)

Take the logs of d2, then average over the level (log-first)

[Taqqu and collaborators] (j, log2 d
2
j)

Average a few d2, take the logs, take average

(mean-log-mean) [Soltani and collaborators] (j, log2 d
2
j)
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Estimating Slope: Approaches
OLS – wrong methodology – but works OK.

Weighted LS (Abry & Veitch, 1999)

yj = log d2j + 1/(nj log 2), nj is the number of ds in level j.

ŝl =
∑

j wjyj, where wj = (S0j − S1)/(S0S2 − S2
1)

Sk =
∑

j j
k/σ2

j , k = 0, 1, 2 and σ2
j = 2/(nj log

2 2)
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Weighted LS (Abry & Veitch, 1999)

yj = log d2j + 1/(nj log 2), nj is the number of ds in level j.

ŝl =
∑

j wjyj, where wj = (S0j − S1)/(S0S2 − S2
1)

Sk =
∑

j j
k/σ2

j , k = 0, 1, 2 and σ2
j = 2/(nj log

2 2)

Theil-Sen-Type Estimator (Hamilton et al, 2011)

Find all pairwise slopes sij = (log d2j − log d2i )/(j − i)

generated by two points (i, log d2i ) and (j, log d2j),
jmin < i < j < jmax.

Estimate the slope as a weighted average of pairwise slopes
corrected for the bias.

What are optimal weights?
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Derivation of TS-Type Estimator

Start with m-D fBm BH(ω, t) and transform it to the wavelet
domain. Consider the main diagonal hierarchy (s = 0), a
multiresolution ladder indexed by j.

dj ∼ N (0, 2−(2H+m)jσ2).

The coefficients dj within the level j are (typically)
considered approximately independent (Flandrin, 1992). At
level j there are 2mj coefficients. Thus,

d2j
d
= 2−(2H+2m)jσ2χ2

2mj .

Expectation and variance of average level-energies

IEd2j = 2−(2H+m)jσ2, Var d2j = 2−4Hj−3mj+1σ4
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IEϕ(X) ≈ ϕ(IEX) +
1

2
ϕ′′(IEX) ·VarX

Varϕ(X) ≈ (ϕ′(IEX))2VarX.

When ϕ is logarithm for base 2, then

IE log2 d
2
j = −(2H +m)j − 1

2mj log 2
+ log2 σ

2.
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IEϕ(X) ≈ ϕ(IEX) +
1

2
ϕ′′(IEX) ·VarX

Varϕ(X) ≈ (ϕ′(IEX))2VarX.

When ϕ is logarithm for base 2, then

IE log2 d
2
j = −(2H +m)j − 1

2mj log 2
+ log2 σ

2.

Var log2 d
2
j =

2

2mj(log 2)2
.
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Variance of the pairwise slope sij is

Var sij = Var

(
log2 d

2
j − log2 d

2
i

j − i

)

=
2

(log 2)2
· 1/2

mj + 1/2mi

(j − i)2
.

Take weights wij inverse-proportional to the variance of sij,

wij ∝ (i− j)2 ×HA(2mi, 2mj),
∑

i<j

wij = 1,

where HA is the harmonic average of level sizes.

s∗ij = sij +
1

(j − i) log 2

(
1

2mj
− 1

2mi

)

Theil-Sen-Type Estimator: Slope estimated by
∑

i,j wijs
∗
ij
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Data: Mammogram Images

Digitized mammograms from University South Florida
Digital Database for Screening Mammography (DDSM)
Gold standard was biopsy
105 normal and 72 cancer craniocaudal (CC) images
A subimage of size 1024 × 1024 taken from each image
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Figure: (Left) Estimated density of H obtained from 105 controls (solid line)
and 72 cancer cases (dotted line); (Right) Logistic fit
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Figure: (Left) Estimated density of H obtained from 105 controls (solid line)
and 72 cancer cases (dotted line); (Right) Logistic fit

Symmlet 8 tap, 5 ≤ j ≤ 8, Found H−1, H,H+1 corresponding
to s = 0,±1.
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Symmlet 8 tap, 5 ≤ j ≤ 8, Found H−1, H,H+1 corresponding
to s = 0,±1.
120 randomly selected as training, 57 as validation set
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Observations
Logistic Fit

Figure: (Left) Estimated density of H obtained from 105 controls (solid line)
and 72 cancer cases (dotted line); (Right) Logistic fit

Symmlet 8 tap, 5 ≤ j ≤ 8, Found H−1, H,H+1 corresponding
to s = 0,±1.
120 randomly selected as training, 57 as validation set
The most informative was diagonal H , adding descriptors
H−1, H+1 improves classification, but minimally.
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Simulations

Average error rate from M = 5000 runs

Method Error [%]

OLS 39.9
Abry-Veitch 24.1
Theil-Sen 25.4
Modified Theil-Sen∗ 18.2
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Simulations

Average error rate from M = 5000 runs

Method Error [%]

OLS 39.9
Abry-Veitch 24.1
Theil-Sen 25.4
Modified Theil-Sen∗ 18.2

∗Modified Theil-Sen has weights
∝ 2i+j(j − i)2HA(22i, 22j)
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Some Observations
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Some Observations

Sampling density of Y = log2 d
2
j for fixed H, j,m, and σ2 is

g(y) =
log 2

Γ(2mj−1)

(
2y+2(H+m)j−1

σ2

)2mj−1

exp

{
−2y+2(H+m)j−1

σ2

}
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log 2

Γ(2mj−1)

(
2y+2(H+m)j−1

σ2

)2mj−1

exp

{
−2y+2(H+m)j−1

σ2

}

Possible distribution of pairwise slopes, Bayesian approach
with prior on H , or more generally on (H, σ2).
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Some Observations

Sampling density of Y = log2 d
2
j for fixed H, j,m, and σ2 is

g(y) =
log 2

Γ(2mj−1)

(
2y+2(H+m)j−1

σ2

)2mj−1

exp

{
−2y+2(H+m)j−1

σ2

}

Possible distribution of pairwise slopes, Bayesian approach
with prior on H , or more generally on (H, σ2).

Since 22H(j−i) d
2
j·
d2
i· ∼ Fnj ,ni

, for d2j· =
∑

k∈level j d
2
jk and nj is

the number of d’s in level j, (1− α)100% CI for H is



log2

(
Fnj ,ni,α/2 ×

d2
i·
d2
j·
)

2(j − i)
,

log2

(
Fnj ,ni,1−α/2 ×

d2
i·
d2
j·
)

2(j − i)
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Multifractal Spectra
Given α,

f(α) = lim
ǫ→0

lim
j→∞

log2Mj

j

Mj = #{k| 2−j(α+ǫ) ≤ |djk| ≤ 2−j(α−ǫ) }/2j.

Partition function:

S(q) = lim
j→∞

log2 IE|dj,k|q.

The Legendre transform of a partition function S(q) is defined as

fL(α) = inf
q
{qα− S(q)}.

fL(α) converges to the true multifractal spectrum f(α)
(Ellis, 1984).
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Multifractal Spectra

Gonçalvès, Reidi, and Baraniuk (1998) “Asilomar Paper”
discussed discrete wavelet transform Legendre spectra as an
approximation to multifractal spectra.
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discussed discrete wavelet transform Legendre spectra as an
approximation to multifractal spectra.

In the discrete wavelet transform the “energies” are
generalized, d2jk =⇒ |djk|q, q > −1.

Slope (partition function) S(q) found on pairs (j, log2 |dj|q)
Define Legendre spectra as (α, f) with α(q) = S ′(q) and
f(q) = qα(q)− S(q).

))(( qf

2.0

0

1 2 )(q

Summaries:
Spectral Mode ≡ H

Left Slope, Right Slope
Left Tangent, Right Tangent

Broadness
αL and αR
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• Theil-Sen-type estimator for slopes S(q), q > −1 uses the same
weights as S(2).

• The variance of
(
log2 |dj|q − log2 |di|q

)
/(j − i) does depend on q

but via a multiplicative factor free of j.
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Turb 0.3382 0.7331 -0.3229 2.7500 -0.5400 0.8922

fBm 0.3422 1.4845 -0.5704 3.7400 -0.8700 0.4853

Signals with LS < 1.2144 significantly different from
monofractals.

LS = 1.4845, 5% = 1.2144, LS = 0.7331
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Wavelet Convex Rearrangements

Let X(t), t ≥ 0 be Gaussian process satisfying A and let g be a
wavelet high-pass filter (QM counterpart of h)
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Wavelet Convex Rearrangements

Let X(t), t ≥ 0 be Gaussian process satisfying A and let g be a
wavelet high-pass filter (QM counterpart of h)
Define g-convex rearrangement of X(t) as

VXg,N (t) = X(0) +

⌊Nt⌋−1∑

i=0

Yg,(i:N) + (Nt− ⌊Nt⌋)Yg,(⌊Nt⌋:N),

where {Yg,(0:N), . . . , Yg,(N−1:N)} is order statistics for the sequence

Yg

(
k
N

)
=
∑ℓ

n=0 gnX
(
k−n
N

)
, for k = 0, 1, . . . , N − 1.
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Define g-convex rearrangement of X(t) as

VXg,N (t) = X(0) +

⌊Nt⌋−1∑

i=0

Yg,(i:N) + (Nt− ⌊Nt⌋)Yg,(⌊Nt⌋:N),

where {Yg,(0:N), . . . , Yg,(N−1:N)} is order statistics for the sequence

Yg

(
k
N

)
=
∑ℓ

n=0 gnX
(
k−n
N

)
, for k = 0, 1, . . . , N − 1.

Let gd be dilation of filter g obtained by inserting d− 1 zeros
between non-zero filter taps. For example, for
g = g1 = {1/

√
2 − 1/

√
2} the 3-dilated filter is

g3 = {1/
√
2 0 0 − 1/

√
2}.
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Theorem
Let

ID(N, d1, d2, t0) =
VXgd2 ,N(t0)

VXgd1 ,N(t0)
.

Then for any t0 ∈ [0, 1], and integers d1, and d2,

log |ID(N, d1, d2, t0)|
log(d2/d1)

−→ H, a.s.

Idea of proof:
VXg,N (t)

bN (g)
→ L(t) =

∫ t
0
Φ−1(s)ds = − 1√

2π
exp

{
−1

2
(Φ−1(t))

2
}
, a.s.

and bN (gs)
bN (gt)

= (s/t)H .
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Figure: (Left) 10 runs, n = 1024, d1 = 1 and d2 = 6. Symmlet 8 tap
filter used. (Right) Single run but Daubechies 4-20 tap filters used
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Conclusions

A case for the importance od scaling

assessment made

Spectra from scale-mixing 2D wavelet

transform

An overview of a robust estimator of scaling

presented

Illustration on mammogram medical

diagnostics
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