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Abstract: The problem of estimating the log-spectrum of a stationary Gaussian
time series by Bayesianly induced shrinkage of empirical wavelet coefficients is
studied. A model in the wavelet domain that accounts for distributional properties
of the log-periodogram at levels of fine detail and approximate normality at coarse
levels in the wavelet decomposition, is proposed. The smoothing procedure, called
BAMS-LP (Bayesian Adaptive Multiscale Shrinker of Log-Periodogram), ensures
that the reconstructed log-spectrum is as noise-free as possible. It is also shown that
the resulting Bayes estimators are asymptotically optimal (in the frequentist sense).

Comparisons with non-wavelet and wavelet-non-Bayesian methods are discussed.
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1 Introduction

Any statistical inference in time series can be conducted in time and frequency domains. The
methods are complementary and provide different insights. Spectral analysis, and in particular,
estimation of spectral density is an indispensable tool for exploring the frequency behavior of a
time series.

Wavelet shrinkage methods have successfully been applied to the spectral density esti-
mation in work of Lumeauet al. (1993), Moulin (1992, 1994), Gao (1992, 1993a,b) from the
classical view-point. In this paper we propose a novel wavelet-shrinkage method, based on
intrinsic shrinkage property of Bayes rules. The proposed shrinkage rules resulting from hier-
archical Bayes statistical models are both realistic, i.e., describe data accurately, and capable of
incorporating the available prior information on smoothness of functions represented by their
wavelet coefficients.

Let {Xt, t ∈ Z} be a a real, weakly stationary time series with zero mean and autocovari-
ance functionγ(h) = EX(t + h)X(t). An absolutely summable complex-valued functionγ(·)
defined on integers is the autocovariance function ofXt if and only if the function

f(ω) =
1

2π

∞∑

h=−∞
γ(h)e−ihω (1.1)

1



is non-negative for allω ∈ [−π, π]. The functionf(ω) is called the spectral density associated
with covariance functionγ(h). Thus, the spectral density of a stationary process is a symmetric
and non-negative function. Given the spectral density, the autocovariance function can uniquely
be recovered via inverse Fourier transformation,

γ(h) =

∫ π

−π

f(ω)eihωdω, h = 0,±1,±2, . . . .

In particular, the variance ofXt is equal toγ(0) =
∫ π

−π
f(ω)dω.

An important class of stationary processes consists of autoregressive-moving average
ARMA(p, q) processes defined via

φ(B)Xt = θ(B)Zt, {Zt} ∼ WN(0, σ2), (1.2)

whereB is the backshift operator, WN(0, σ2) is the white noise with varianceσ2, the poly-
nomialsφ(z) = 1 − φ1z − · · · − φpz

p andθ(z) = 1 + θ1z + · · · + θqz
q have no common

zeroes, andφ(z) has no zeroes on the unit circle. The spectral density ofXt in (1.2) is a rational
trigonometric function,

fX(ω) =
σ2

2π

|θ(e−iω)|2
|φ(e−iω)|2 , − π ≤ ω ≤ π. (1.3)

Estimation of spectral density from the observed data is an important statistical task in a
variety of applied fields in which the information about frequency behavior of the phenomena
is essential. Spectral density cam be estimated in the time domain by fitting the polynomials
φ(z) andθ(z) in the representation (1.3), or directly in the frequency domain. It turns out that
latter approach is generally superior.

A traditional statistic used as an estimator of the spectral density is theperiodogram.The
periodogramI(ω), based on a sampleX0, . . . , XT−1 is defined as

I(ωj) =
1

2πT

∣∣∣∣∣
T−1∑
t=0

Xte
−itωj

∣∣∣∣∣

2

, (1.4)

whereωj is the Fourier frequencyωj = 2πj
T

, j = [−T/2] + 1, . . . ,−1, 0, 1, . . . , [T/2]. By
a discrete version of the sampling theorem it holds thatI(ω) is uniquely determined for all
ω ∈ [−π, π], given its values at Fourier frequencies. Because of symmetry ofI(ω), we will
focus only on non-negative Fourier frequencies,ωj = 2πj

T
, j = 0, 1, . . . , [T/2].

For any set of Fourier frequenciesω1, ω2, . . . , ωn such that0 ≤ ω1 < · · · < ωn < π, I(ωi)
are asymptotically independent exponential random variables with meansf(ωi) and variances
(f(ωi))

2, wheref is the spectral density. Consequently the periodogram is not a consistent
estimator off(ω), and citing Wahba (1980), “it will be hopelessly wiggly even whenf(ω) is a
smooth function” andT →∞.
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Smoothing the periodogram will not only help in visually extracting significant frequen-
cies, but smoothed periodograms can also be consistent estimators off . For a standard theory
see Brockwell and Davis (1991). There are three approaches in achieving the consistency in the
spectral density estimators: (i) smoothing the periodogram directly via a weighted local average,
(ii) smoothing the log-periodogram via traditional regression techniques, and (iii) maximizing
Whittle’s likelihood (or penalized likelihood) of the periodogram (Chow and Grenander, 1985;
Pawitan and O’Sullivan,1994). The literature on the smoothing techniques in spectral density
estimation is quite rich, see for example Brillinger (1981), Koopmans (1995), Percival and
Walden (1993), Priestley (1981), Shumway and Stoffer (2000), and the numerous references
therein.

In this paper we focus on the smoothing of log-periodogram. Early reference on utiliz-
ing splines and Fourier decomposition of log-periodogram are Cogburn and Davis (1974) and
Wahba (1980). Fan and Kreutzberger (1998) investigate likelihood-based spectral density and
log-spectral density operators.

The idea of using wavelets in smoothing log-periodograms was announced in Donoho
(1993) and fully developed by Hong-Ye Gao in his Berkeley PhD Thesis (Gao, 1993a) and
papers (Gao, 1993b; 1993c). Moulin (1994) applies saddle point estimation to tail probabilities
of distributions of wavelet coefficients to exhibit thresholds for a log-periodogram.

Bayesian approaches to spectral time series analysis include Choudhuri, Ghosal, and Roy
(2003), Gangopadhyay, Mallick and Denison (1998), and Huerta and West (1999), among oth-
ers.

2 Bayesian Model

It is now standard practice in wavelet shrinkage to specify a location model on the wavelet
coefficients, elicit the prior on their locations (the signal part in wavelet coefficients) and other
unknown parameters, exhibit the Bayes estimator for the locations and, if the resulting Bayes
rules are shrinkage estimators, apply the inverse wavelet transformation to the estimators. This
is the core of Bayesian wavelet shrinkage.

It is certainly desirable for selected models to well-describe our empirical observations
and perform well in terms of mean square error, for the majority of signals and images. At
the same time, usually high dimensions of wavelet descriptions, the calculation complexity of
shrinkage rules should remain low. Our experience (Vidakovic and Ruggeri, 2001) is that ad-
vanced but complicated models, for which the rules are obtained by, say, extensive MCMC
simulations, or genetic algorithms, etc., are seldom accepted by practitioners, despite their re-
portedly good performance.

We believe that two desirable goals,simplicity and realityof a model, can be achieved
simultaneously by statistical modeling in the wavelet domain.

As a consequence of decorrelating property of wavelet transformations, simple “indepen-
dence” models that model each coefficient separately are justified. We adopt a paradigmatic
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location model in which the empirical wavelet coefficients of (shifted) log-periodogram,d, are
modeled via a density (likelihood)ζ(d − θ) whereθ is the wavelet counterpart of the log-
spectrum. The same model can be used with slight scale modifications implied by the prior on
θ, for all detail coefficients.

We discuss the model building in stages: the likelihood, the prior, the calculation of the
Bayes rule and selection of the hyperparameters. We call the resulting shrinkage algorithm
BAMS-LP (short for Bayesian Adaptive Multiscale Shrinker of Log-Periodogram).

2.1 Likelihood

Under mild conditions (Brillinger, 1981; Theorem 5.2.6) it holds

I(ω`)
iid≈ 1

2
f(ω`)χ

2
2, (2.1)

where
iid≈ means “approximately iid”, for the “inner” non-zero Fourier frequenciesω`. For

ω = 0 and extreme Fourier frequencies when the sample sizeT is even, the right-hand side of
(2.1) becomesf(ω)χ2

1. We will ignore this difference since its effect is negligible forT large.
We also assume that iid in (2.1) is exact, which is true for only circulant time series (Harvey,
1989). By taking the logarithm in (2.1) we obtain a regression formulation (called Wahba’s
formulation)

z` = ln f(ω`) + ε`, (2.2)

wherez` = ln I(ω`) + γ andγ is the Euler-gamma constant (γ = 0.577126).
The exact distribution of the log-periodogram can be found in Wittwer (1986).

The following lemma describes the distribution of the error termε, in (2.2).

Lemma 2.1. The random variablesεl, l = 0, · · · , T − 1, are approximately independent,
identically distributed with the density

µ(x) = γ∗ exp(x− γ∗ex), (2.3)

whereγ∗ = e−γ = 0.546146. Also, Eεl = 0 and Varεl = σ2 = π2/6, l = 0, · · · , T − 1.
Skewness ofε is γ1 = −2ζ(3)/(π2

6
)3/2 ≈ −1.14, whereζ is Reimann’s zeta function.

Proof. Easy, asεl − γ
d
= ln

(
1
2
χ2

2

)
.

In the wavelet domain (2.2) becomes

d∗ = θ∗ + δ∗, (2.4)

where

d∗ = Wz; z = (z0, z1, · · · , zT−1);

θ∗ = Wy; y = (ln f(ω0), ln f(ω1), · · · , ln f(ωT−1));

δ∗ = Wε; ε = (ε0, ε1, · · · , εT−1);
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Level j λj Level j λj

J − 1 0.355 J − 5 0.060
J − 2 0.179 J − 6 0.045
J − 3 0.127 J − 7 0.025
J − 4 0.092 ≤ J − 8 ≈ 0

Table 1: The weightsλj in the likelihood approximation (2.5)
.

andW is an orthogonal matrix of the discrete wavelet transform.

LetJ be such that2J = T . Then vectorδ∗ can be represented asδ = (δ∗0, δ
∗
0, δ

∗
1, · · · , δ∗J−1)

whereδ∗j = (δ∗j,0, δ
∗
j,1, · · · , δ∗j,2j−1) is the j-th sub-vector associated with the multiresolution

analysis. Here,j = 0 denotes the smooth part corresponding to the scaling function while
j = J − 1 is the finest resolution level. Similarly,d∗ = (d∗0, d

∗
0, d

∗
1, · · · , d∗J−1) and θ∗ =

(θ∗0, θ
∗
0, θ

∗
1, · · · , θ∗J−1).

Exact distribution for vectorδ∗ can be found since the transformation matrixW can be written
in an explicit form. By the central limit theorem (for conditions on wavelet bases for CLT to
hold, see Moullin, 1994) it follows that the density function of a componentδ∗j,k can be well
approximated by a mixture

ζj(x) = (1− λj)η(x) + λjµ(x), (2.5)

whereµ(x) is defined in (2.3),η(x) is the normal pdf

η(x) = (σ
√

2π)−1 exp
(−x2/2σ2

)
. (2.6)

andσ2 = π2/6. Here,λj ’s are non-zero at fine resolution levels, and equal to zero at coarse
resolution levels, namely,λj = 0 if j ≤ J0. In theory, we needJ − J0 → ∞, however, in
practice, the central limit theorem can be applied for all except a few finest resolution levels.

Figure 2.1 shows three densities and the histogram. The log-chisquareµ(x) and normal
η(x) densities are depicted in dotted and dashed lines and their mixtureζ(x) (solid line) is
obtained from (2.5) with weightλ = 0.355, see Table 2.1. The histogram shows the empirical
distribution of wavelet coefficients at the first level of detail. Wavelet is Coiflet 3 (18 tap filter),
and the histogram is based on214 observations (T = 215). Note quite satisfactory approximation
of the histogram by the mixture.

The Table 2.1 provides weightsλj for the highest resolution levels. The table is obtained
by matching skewness of the likelihood mixture (2.5) and the empirical distributions ofδ∗j .
Wavelet used was Coiflet 3, but the weights are quite robust for other standard bases such as
Symmlets and Daubechies’.
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Figure 1: The log-chisquareµ(x) and normalη(x) densities (dotted and dashed lines) and
their mixtureζ(x) (solid line) obtained with weightλ = 0.355 . The bar plot is the empirical
distribution of wavelet coefficients at the first level of detail.

2.2 Prior Selection

Since wavelet representations of regular and piecewise-regular functions contain only a few
non-negligible coefficients in their expansions, we place the standardly used Berger-Müller
prior on the discrete wavelet coefficientθ∗jk:

θ∗jk ∼ πj δ(0) + (1− πj) τjξ(τjx), (2.7)

where0 ≤ πj ≤ 1, δ(0) is a point mass at zero, and the “spread” densityξ(x) is symmetric
and unimodal. We also assume that wavelet coefficientsθ∗jk are apriori independent. The factor
πj is the prior probability that a coefficientθ∗jk at levelj is zero. In what follows, however, we
shall impose all conditions on the prior odds ratio:

βj =
πj

1− πj

. (2.8)

2.3 Bayes Rule and BAMS-LP Estimator

Our objective is to estimate the location parameter in our model, i.e., the log-spectral density
g(ω) = ln f(ω). Denote the wavelet coefficients ofg by θjk, so thatg can be reconstructed as

g(x) =
√

πθ0ϕ(πx) +
√

π

∞∑
j=0

2j−1−1∑

k=−2j−1

θjkψjk(πx) (2.9)

with ψjk(x) = 2j/2ψ(2jx−k), θ0 =
√

π
∫∞
−∞ ϕ(πx)g(x)dx andθjk =

√
π

∫∞
−∞ ψjk(πx)g(x)dx.

Hereϕ(x) is the scaling function andψ(x) is the corresponding wavelet function. Recall thatθ∗jk
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andθjk are related asθ∗jk ≈
√

Tθjk (see e.g. Vidakovic, 1999)). This rescaling is a consequence
of changing the domain of the transformed function, namely,θ∗ approximatesθ only when the
sampling interval is equal to 1. The relation≈ in θ∗jk ≈

√
Tθjk could be replaced by equality

only when the wavelet basis is interpolating. The wavelet bases we used in our simulations,
symmlets and coiflets, are close to interpolating.

Denote
djk = d∗jk/

√
T , νj =

√
Tτj. (2.10)

Taking into account the relation betweenθ∗jk and θjk and (2.5) – (2.10), we derive that the
posterior pdf ofθjk givendjk is of the form

P (θjk|djk) =

√
T ζj(

√
T (djk − θjk)) νjξ(νjθjk)∫∞

−∞
√

T ζj(
√

T (djk − x))νjξ(νjx)dx + βj

√
T ζj(

√
Tdjk)

,

whereζj(x) is defined in (2.5). Choosing the posterior mean as an estimator we arrive at the
following estimator ofθjk:

θ̂jk =
(1− λj)I1(djk) + λjI

∗
1 (djk)

(1− λj)I0(djk) + λjI∗0 (djk) + βj

√
T ζj(

√
Tdjk)

, 0 ≤ j ≤ J − 1, (2.11)

andθ̂jk = 0 asj ≥ J . Here

Ii(d) =

∫ ∞

−∞
xi
√

T η(
√

T (d− x)) νjξ(νjx)dx, i = 0, 1, (2.12)

I∗i (d) =

∫ ∞

−∞
xi
√

T µ(
√

T (d− x)) νjξ(νjx)dx, i = 0, 1, (2.13)

with η(x) andµ(x) given by (2.3) and (2.6), respectively. Shrinkage rule in (2.11) is shown
in Figure 2.3, for some exemplary selection of hyper-parameters. The vertical dotted lines are
plotted to emphasize the asymmetry of the rule

Hence, the BAMS-LP estimator ofg is of the form

ĝ(x) =
√

πθ̂0ϕ(πx) +
√

π

J−1∑
j=0

2j−1−1∑

k=−2j−1

θ̂jkψjk(πx), (2.14)

whereθ̂0 = d∗0/
√

T .
In spite of having seemingly complex form, the estimatorsθ̂jk are easy to compute in

a number of cases. For example, if the prior pdfξ(·) is double exponential, the integrals
Ii(d), i = 0, 1, and I∗i (d), i = 0, 1, can be expressed in terms of normal cdf and incom-
plete gamma functions, respectively. In the case whenξ(·) is a normal pdf, the values of
Ii(d), i = 0, 1, are well known (see e.g. Abramovichet al. , 1998). It is somewhat harder
to find expressions for functionsI∗i (d), i = 0, 1, however, their Fourier transforms can be writ-
ten explicitly in terms of gamma functions of complex argument. To summarize, in a number
of cases, one can calculate the valuesθ̂2

jk efficiently without residing to numerical integration.
Our simulations in Section 4 have been done using double exponential densityξ(·).
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Figure 2: Shrinkage rule in (2.11), BAMS-LP rule, for a selection of hyper-parameters. The
vertical dotted lines are plotted to emphasize the asymmetry of the rule.

3 Minimax Convergence Rates for BAMS-LP estimators

It is well known that no function estimation performs well if the function to be estimated belongs
to an unrestricted functional space. Standard restrictions require the target function to belong to
one of the range of smoothness spaces for which the wavelets are unconditional bases.

In order to assess the error of BAMS-LP estimatorĝ we assume thatg belongs to a ball
Hr(A) in the Sobolev spaceHr, r > 1/2. Wavelets are unconditional bases forHr, that is

g ∈ Hr(A) ⇐⇒ θ2
0 +

∞∑
j=0

2j−1−1∑

k=−2j−1

θ2
jk(1 + 22jr) ≤ A, r > 1/2. (3.15)

For any possible estimatorg̃ of g based onT observations we define the mean integrated square
error (MISE) over the setF as

R(T,F) = sup
g∈F

E‖g̃ − g‖2
L2[−π,π]. (3.16)

We establish convergence rates forR(T, Hr(A)) asT →∞ and show thatR(T,Hr(A)) could

deviate from the optimal rateO
(
T− 2r

2r+1

)
by just a logarithmic factor.

Although, to the best of our knowledge, no lower bounds forR(T, Hr(A)) are available

in the case of estimation of log-spectral density, the rate ofO
(
T− 2r

2r+1

)
represents a landmark.

Donoho and Johnstone (1998) showed that when the errorsδ∗j,k are independent and normally
distributed,T = n andg belongs to a ballBs

p,q(A) in the Besov spaceBs
p,q[0, 1], then

inf
g̃

R(n, Bs
p,q(A)) = O

(
n−

2s
2s+1

)
(n →∞) (3.17)
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provideds > max(0, 1/p− 1/2) andp, q ≥ 1. SinceHr = Br
2,2, (3.17) implies that

inf
g̃

R(T, Hr(A)) = O
(
T− 2r

2r+1

)
(T →∞). (3.18)

Since, by (2.5), for majority of resolution levels (j ≤ J0), the errorsδ∗j,k are close to normal, we
can expect to achieve convergence rate close to (3.18) asT → ∞ for some choices ofξ(·) in
(2.7).

3.1 Asymptotic Results

Let the multiresolution analysis generating the scaling functionϕ(x) and a corresponding wavelet
functionψ(x) bes-regular withs ≥ r. Assume that the spread density componentξ(x) in the
prior (2.7) is three times differentiable at least in a piecewise sense, has a finite fourth moment
and satisfies the conditions

| ξ(k)(x)/ξ(x)| ≤ Cξ,1(1 + |x|λ)k, k = 1, 2, 3, λ ≥ 0, (3.19)∣∣ exp
(−Tx2/2σ2

) /
ξ(νjx)

∣∣ ≤ Cξ,2 if νj/
√

T → 0. (3.20)

Let also the integralsIi(d) defined in (2.12) be such that

|I1(d)/I0(d)− d| = O
(|d|ν2

j /n
)

if νj/
√

T → 0, νj|d| → ∞, (3.21)

I0(d) ∼ νjξ(νjθ), if νj/
√

T → 0, νj|d| → ∞. (3.22)

|I1(d)/I0(d)| = O
(|d|T/ν2

j

)
if νj/

√
T →∞. (3.23)

We denote
j0 = (2r + 1)−1 log2 T (3.24)

and assume that parametersνj, βj andJ0 are such that

ν2
j = C12

(2r+1)j, (3.25)

2J0 ≥ T 1/2r (3.26)

β2
j = O

(
2(4r+1)jT−(4r+1)/(2r+1)

)
if j ≤ j0. (3.27)

Remark 1. Assumptions aboutνj can be translated into the ones onτj using relation
(2.10), namely,τ 2

j = C∗
12(2r+1)jT−1.

Remark 2. Condition of the existence of the fourth moment is purely technical and is
used for derivation of asymptotic expansions of the integralsIi(d), i = 0, 1. This condition can
be dropped and replaced by assumptions (A.1)–(A.4) and (A.6)– (A.7) about integralsIj(d) and
I∗j (d), j = 0, 1.
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Remark 3. Condition (3.26) is quite realistic and agree with the central limit theorem.
Note that we have an infinite numberJ − J0 = (2r)−1(2r − 1) log2 T resolution levels till
the central limit theorem takes place. In practice the normality assumption can be verified via
level-by-level testing.

Theorem 1.Let assumptions (3.19)–(3.22) and (3.25) – (3.27) be valid. Then

R(T, Hr(A)) = O
(
T− 2r

2r+1 [ln T ]
1

2r+1

)
, T →∞. (3.28)

If, moreover, condition (3.23) holds, then

R(T, Hr(A)) = O
(
T− 2r

2r+1

)
, T →∞. (3.29)

Corollary 1. Let assumptions (3.25) – (3.27) be valid. Ifξ(x) is a normal pdf, then
R(T, Hr(A)) is of the form (3.28).

Corollary 2. Let assumptions (3.25) – (3.27) be valid. Ifξ(x) is a double-exponential pdf
or a pdf of thet-distribution, thenR(T, Hr(A)) is of the form (3.29).

Remark 4. Convergence rates in Theorem 1 differ from optimal rate (3.18) by a loga-
rithmic factor. It is not clear to the authors whether this is due to the nature of the problem or to
the deficiency of the proof.

4 Simulations and Comparisons

Implementation of the proposed Bayesian wavelet shrinkage can be described algorithmically.
Here is description of BAMS-LP algorithm.

1. Calculate the log-periodogram of time series at for non-negative Fourier frequencies. To
avoid boundary effects, the log-periodogram sequence is extended over the boundaries in
the mirror-like fashion. The length of the extended sequence should be power of 2.

2. Transform the data in the wavelet domain. Apply Bayes shrinkage rule (2.11) on all detail
coefficients.

3. Transform back the data and take the subsequence corresponding to the unextended log
periodogram from the step1. To obtain an estimator of the log-spectral density add the
Euler constantγ.

We demonstrate the BAMS-LP on the Sunspot data set. We also briefly review wavelet-
based estimator of log-spectral density, GAO, proposed by Gao (1993b), since the developed
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Bayesian wavelet shrinkage provides a rationale for its improvements. Finally, we compare the
performance of BAMS-LP to the best modification of GAO algorithm and discuss an automatic
selection of hyperparameters in the model. The comparison is done on standardly used ARMA
template time series:Xt = Zt − 0.3Zt−1 − 0.6Zt−2 − 0.3Zt−3 + 0.6Zt−4, andXt = 0.9Xt−4 +
0.8Xt−8− 0.63Xt−12 + Zt. (Wahba, 1980; Gao, 1993b, Moulin, 1994, among others). The row
log-periodograms and the theoretical spectral densities (superimposed in white) for these two
test examples are given in Figure 4(a, b).
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Figure 3: Log-periodogram and theoretical log spectral density of (a) MA(4) processXt =
Zt−0.3Zt−1−0.6Zt−2−0.3Zt−3+0.6Zt−4, and (b) AR(12) processXt = 0.9Xt−4+0.8Xt−8−
0.63Xt−12 + Zt.

4.1 Sunspot Data Analysis

A real-life application of spectral and log-spectral estimation involves the processing of Wolf’s
data set. Although in this situation the statistician does not know the “true” signal, the theory
developed by solar scientist helps to evaluate performance of the algorithm.

The Sun’s activity peaks every 11 years, creating storms on the surface of our star that
disrupt the Earth’s magnetic field. These “solar hurricanes” can cause severe problems for
electricity transmission systems. An example of influence of such periodic activity to everyday
life is 1989 power blackout in the American northeast.

Efforts to monitor the amount and variation of the Sun’s activity by counting spots on it
have a long and rich history. Relatively complete visual estimates of daily activity date back
to 1818, monthly averages can be extrapolated back to 1749, and estimates of annual values
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can be similarly determined back to 1700. Although Galileo made observations of sunspot
numbers in the early 17th century, the modern era of sunspot counting began in the mid-1800s
with the research of Bern Observatory director Rudolph Wolf, who introduced what he called
the Universal Sunspot Numberas an estimate of the solar activity. The square root of Wolf’s
yearly sunspot numbers are given in Figure 4.1(a), data from Tong (1996) p. 471. Because of
wavelet data processing we selected a sample of size a power of two, i.e., only 256 observations
from 1733 till 1998. The square root transformation was applied to symmetrize and de-trend
the Wolf’s counts. The panel (b) in Figure 4.1 shows the the BAMS-LP estimator.
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Figure 4: (a) Square roots of Wolf’s yearly sunspot numbers from 1732-1988 (256 observa-
tions); (b) BAMS-LP estimator of the log-spectra. The frequencyω∗ ≈ 0.58 corresponds to
Schwabe’s period of 10.8 (years).

The estimator reveals a peak at frequencyω∗ ≈ 0.58, corresponding to the Schwabe’s cycle
ranging from 9 to 11.5 (years), with an average of2π

0.58
≈ 10.8 years. The Schwabe cycle is the

period between two subsequent maxima or minima the solar activity, although the solar physi-
cists often think in terms of a 22-year magnetic cycle since the sun’s magnetic poles reverse
direction every 11 years.

4.2 Gao’s Algorithm and Its Modifications

Motivated by the apparent asymmetry of the Bayes shrinkage rules (Figure 2.3), we propose
modifications to a Gao’s algorithm. For completeness, a brief overview of the original Gao’s
algorithm (GAO, Gao; 1993b) is provided.

The GAO algorithm for estimating the log-spectral density consists of three steps. The
steps 1 and 3 in GAO and BAMS-LP algorithm coincide. The step 2’ in which the shrinkage is
applied is as follows:

12



2’. Apply the soft thresholding ruleδs(x, λ) = sign(x) (|x| − λ)+, with thresholdλj,T ,
depending on the levelj and sample sizeT , as follows:

(a) If the shrinkage is applied to the resolution levels of fine detail (j = J−1, J−2, . . . )
then the threshold

λj,T = αj ln
T

2
(4.30)

is selected. The typical values ofαj, robust for commonly used wavelet bases, such as
Coiflets, Daubechies’, and Symmlets, are given in Table 4.2.

level j αj level j αj

J − 1 1.29 J − 6 0.54
J − 2 1.09 J − 7 0.46
J − 3 0.92 J − 8 0.39
J − 4 0.77 J − 9 0.32
J − 5 0.65 J − 10 0.27

Table 2: Values of multipliers for thresholding scales of fine detail in Gao’s Algorithm.

(b) If the resolution level is a coarse, that is, ifj ¿ J − 1, then use

λT =

√
2 ln

T

2
· π2

6
≈

√
3.29 · ln T

2
. (4.31)

The threshold justification is based the distribution of the error as in (2.3) SinceEε` = 0
andV ar ε` = π2/6 the threshold (4.31) is simply the universal threshold. The noise at fine
levels of detail has non-Gaussian character and the threshold in (4.30) is a result of an analysis
of such noise. Details can be found in Gao (1993b).

Motivated by the fact that hard-thresholding policy is superior to the soft in wavelet-
smoothing of log-spectral density and by the apparent asymmetry of the BAMS-LP rule (2.11)
two modifications of the original Gao’s algorithm are proposed.

We call GAOH the method that retains the threshold values from GAO algorithm but
utilizes hard-shrinkage policy, the ruleδh(x, λ) = 1(|x| > λ). An extensive simulational
study shows that GAOH consistently outperforms [in terms of overall MSE] the original GAO
algorithm for a variety of test spectral densities and sample sizes.

The asymmetry of the error distribution propagates through the several fine levels of
wavelet decomposition and the Bayes rule is asymmetric and shrinks more the negative val-
ues of the error, as it can be concluded from Figure 2.3

To further improve GAOH, we propose its asymmetric modification GAOA, in which, at
the fine level of detail, the negative thresholdλ1 exceeds in absolute value the positive threshold
λ, i.e.,−λ1 ≥ λ. Simulations show that appropriate asymmetry isλ1 = −(1 + ρ)λ, with ρ
between 0 and 0.1. andλ from GAO. The shrinkage policy remains hard-thresholding.
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Figure 5: (a) Log-spectral density of MA(4) processXt = Zt− 0.3Zt−1− 0.6Zt−2− 0.3Zt−3 +
0.6Zt−4 estimated by different modifications of GAO algorithm (as in legend) and (b) the area
of detail.

Thus, 3 classical methods are compared, GAO, GAOH, and GAOA and Figure 4.2(a) de-
picts the estimators on Wahba’s MA(4) process. Figure 4.2(b) shows the area of detail demon-
strating better performance of GAOA algorithm withρ = 6%.

4.3 Comparisons

As an illustration of the developed algorithm apply the BAMS-LP on the MA(4) template pro-
cess,Xt = Zt − 0.3Zt−1 − 0.6Zt−2 − 0.3Zt−3 + 0.6Zt−4. Panel (a) in Figure 4.3 gives an area
of detail. The theoretical log-spectral density is plotted dotted line) and its reconstruction by
GAOA (dashed line) and BAMS-LP (solid line); panel (b) gives the mean square error for the
two methods for ten simulational runs; and panel (c) gives the qqplot of the residuals ofexp{ĝ}
in the BAMS-LP model against the theoretical quantiles ofχ2

2 distribution, indicating excellent
distributional compliance of the residuals with theoretical errors. The sample size wasT = 214,
and the wavelet used was Coiflet 3.

We also compare the BAMS-LP to GAOA on several template spectral densities. For ex-
ample, the AR(12) processXt = 0.9Xt−4 + 0.8Xt−8 − 0.63Xt−12 + Zt results in a challenging
log-spectral density, with several, hard to fit, sharp peaks (Wahba, 1980). For the default selec-
tion of parameters, various simulations, and various sample sizes, the AMSE of BAMS-LP is
seldom worse than that of GAOA.
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Figure 6: (a) A detail of a single run of smoothing. (b) the AMSE of GAOA (dashed line) and
BAMS-LP (solid line). (c) The ordered2I(ω)/ ln(ĝ(ω)) plot against the theoreticalχ2

2 quantiles
(the QQ-plot of residuals of the Bayes estimator againstχ2

2 quantiles. )

Choudhuri, Ghosal, and Roy (2003) provide a table of performance of 4 competing rules
discussed in their paper. Although all shrinkage methods in their comparison are concerning
the smoothing of the periodogram, and BAMS-LP is not designed to estimate the periodigram
directly, the exponential of BAMS-LP performs comparable to the investigated methods.

4.4 Selection of Hyperparameters

Selection of hyperparameters is critical for the applicability of BAMS-LP for finite samples.
The selection should be automatic, and although a fine tuning can better the performance, such
automatic selection should perform well for most of log-spectral densities and for all practicable
sample sizes.

The implemented selection of hyperparametersβ, λ, andν, for which all the simulations
have been done, is described below.

The hyperparameterβj is an odds ratio of a coefficient from levelj being a priori 0,
i.e.,βj = πj/(1− πj). Our proposal isβj = 0.1 + 0.8j/(n− 1), wherej is the level andn− 1
is the index of the finest level. Thus when going from fine to coarse levels of details, bothβj

andπj decrease. This reflects the fact that more coefficients are a priori zero at fine than at the
coarse levels and contributes to the smooth appearance of the estimator.

Likelihood-mixing coefficients,λj, had been previously discussed and are provided in
Table 2.1.

The hyperparameterνj is proportional to the scale factorτj in the spread part of the prior
(2.7) ,τjξ(τjθ). We suggested an automatic choice asνj = (1− λj)(j + 2). When going from
fine to coarse levels,νj will decrease almost asj, making the prior more spread at coarse levels,
thus allowing for prior modeling of big coefficients.

The proposal for the hyperparameters is in agreement to common sense of how such
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parameters should influence the model, but it does not blindly follow the large sample choices;
in the common-life analysis of log spectra, the number of levels in wavelet decomposition,n,
seldom exceeds 20.

5 Conclusions

In this paper a wavelet based smoothing of log periodogram is proposed. The shrinkage in
the wavelet domain is induced by an independence model that assumes mixture likelihood and
standard sparseness prior. The Bayes rules produces consistent estimator of the log spectral
density and the convergence rates are optimal if the prior is selected in appropriate way.

Motivated by the asymmetry of Bayes rules we propose a modification of Gao’s algorithm
and compare Bayesian shrinkage with the best version of Gao’s algorithm.

Matlab routines and scripts used in this paper for shrinkage and figures could be found at
http://www.isye.gatech.edu/ brani/wavelets.html . The programs could be
freely used and modified in the spirit of Donoho’s initiative for reproducible research.

Acknowledgments. Peter M̈uller gave useful suggestions at early stage of this project. Ed
George also commented on the results of this research when they have been communicated at
ISBA2003 meeting in Santa Cruz. We thank them both.

A. Appendix

Proofs

Proof of Theorem 1 is based on the following Lemmas.

Lemma 1. If |νjd| is bounded orνj|νjd|λ/
√

T → 0, then asνj/
√

T → 0

I0(d) = νjξ(νjd)
[
1 + O

(
T−1ν2

j |νjd|2λ
)]

, (A.1)

I1(d)/I0(d) = d− νjσ
2

T

ξ′(νjd)

ξ(νjd)

[
1 + O

(
ν2

j

T
|νjd|2λ

)]
= d−O

(νj

T
|νjd|λ

)
. (A.2)

If
√

T |d| is bounded orT |d|/νj → 0, then as
√

T/νj → 0

I0(d) ∼
√

T

σ
√

2π
exp

(
−Td2

2σ2

)[
1 + O

(
T 2d2

ν2
j

)]
, (A.3)

I1(d)/I0(d) ∼ −Td

ν2
j

∫ ∞

−∞
x2ξ(x)dx

[
1 + O

(
T 2d2

ν2
j

)]
= O

(
T |d|
ν2

j

)
. (A.4)
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Proof of Lemma 1. We shall give the proof for (A.1) and (A.2); the proofs of (A.3) and
(A.4) are conducted in a similar manner. Change variablesy =

√
T (d − x) in (2.12) and use

Taylor series expansion:

Ii(d) =
νj√
T

∫ ∞

−∞

(
d− y√

T

)i
exp(−y2/2σ2)

σ
√

2π
ξ

(
dνj − y

νj√
T

)
dy

=
νj√
T

∫ ∞

−∞

(
d− y√

T

)i
exp(−y2/2σ2)

σ
√

2π

[
ξ(dνj)− y

νj√
T

ξ′(dνj) (A.5)

+ y2
ν2

j

2T
ξ′′(dνj)− y3

ν3
j

6T
√

T
ξ′′′(dνj) + · · ·

]
dy.

Integrating in (A.5) withi = 0 andi = 1, we obtain (A.1) and (A.2).

Lemma 2. If
√

T |d| is bounded orν−1
j

√
T exp(

√
Td) → 0 whenT → ∞, then as

T/ν2
j → 0

I∗0 (d) ∼
√

Tµ(
√

Td)

{
1 + O

(
T

ν2
j

[
1 + e2

√
Td

])}
, (A.6)

I∗1 (d) ∼ −ν−2
j

√
T

[
1− γ∗ exp(

√
Td)

] ∫ ∞

−∞
x2ξ(x)dx


1 + O


T

(
1 + e2

√
Td

)

ν2
j





 .(A.7)

Proof of Lemma 2 is similar to the proof of Lemma 1. Just note thatµ′(x) = µ(x)(1−
γ∗ex).

Lemma 3. Let the pdf ofdjk givenθjk be of the form
√

Tζj(
√

T (djk − θjk)) whereζj(·)
is defined in (2.5). Then for any positivea andb asT →∞

E(djk − θjk)
2i = O

(
T−i

)
, i = 1, 2, (A.8)

P (
√

T |djk − θjk| > a
√

ln T ) = o
(
T−a2/(2σ2)

)
, j < J0, (A.9)

P (|djk − θjk| > a ln T ) = λjO
(
T−a

)
+ (1− λj)o

(
T−a

)
, (A.10)

P (
√

T (djk − θjk) > a ln T ) = o
(
T−a

)
, (A.11)

Proof of Lemma 3. Validity of Lemma 3 follow directly from the fact that (compare
with (2.5))

√
T (djk − θjk) ∼ (1− λj)(

√
2πσ)−1 exp

{−x2/(2σ2)
}

+ λj µ(x). (A.12)
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Lemma 4. If ξ(x) is an even unimodal pdf, then

|I1(d)/I0(d)| = O (|d|) if T →∞, (A.13)

|I∗1 (d)/I∗0 (d)| = O (|d|) if νj/
√

T →∞,
√

Td →∞. (A.14)

Proof of Lemma 4. Using the fact thatI0(d) is an even andI1(d) is an odd function of
d, we shall conduct the proof of (A.13) ford > 0.

PartitionI1(d) into I11(d), I12(d) andI13(d) whereI1i, i = 1, 2, 3, are the integrals cal-
culated over the intervals(−d/2, 3d/2), (−∞,−d/2) and(3d/2,∞), respectively. It is easy
to see that|I11(d)/I0(d)| = O(|d|). Let us show thatI12(d)/I0(d) = O(d) since the proof for
I13(d) can be conducted in a similar manner. Making a change of variablex = y − d/2 and
taking into account that, sinceξ is symmetric unimodal,ξ(νj(y− d/2)) ≤ ξ(νjy) for y < 0, we
derive that

|I12(d)| ≤
∫ 0

−∞

∣∣∣∣y −
d

2

∣∣∣∣
√

T√
2πσ

e−
T (3d/2−y)2

2σ2 νj ξ(νjy)dy

= O

(
e−

5d2T
8σ2 d

) ∫ 0

−∞

√
T√

2πσ
e−

T (d−y)2

2σ2 νj ξ(νjy)dy. (A.15)

Here we took into account thatT (3d/2− y)2−T (d− y)2 = 5Td2/4−Tyd, and for negativey

|y − d/2| exp
{
Tyd/2σ2

}
= O(|d|) + O(|Td|−1) = O(|d|)

as
√

T |d| → ∞. Formula (A.15) implies|I12(d)/I0(d)| = O(|d|).

To prove (A.14), partition the integralI∗1 (d) asI∗11(d), I∗12(d) andI∗13(d) whereI∗1i, i =
1, 2, 3, the integrals are calculated over the intervals(−d, d), (−∞,−d) and (d,∞), respec-
tively. It is easy to see that|I∗11(d)/I∗0 (d)| = O(|d|).

To derive an upper bound for|I∗12(d)/I∗0 (d)|, observe thatµ′(z)/µ(z) = 1 − γ∗ez < −z
for z < −2. Therefore, changing variablesx = −(z + d) and taking into account thatξ(·) is
even and unimodal, we obtain

|I∗12(d)/I∗0 (d)| ≤
∫ ∞

0

(z + d)µ(
√

T (z + 2d)) ξ(νj(z + d))dz
/∫ ∞

0

µ(
√

T (z + d)) ξ(νjz)dz

≤
∫ ∞

0

(z + d)µ(
√

T (z + d)) exp[−d
√

T (z + d)
√

T ] ξ(νjz)dz
/ ∫ ∞

0

µ(
√

T (z + d)) ξ(νjz)dz

= O
(
(dT )−1 + d

)
= O (d) .
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Finally, in the case ofI∗13(d), change variablesz = d− x:

I∗13(d) =

∫ 0

−∞
zµ(

√
Tz)ξ(νj(d− z))dz − d

∫ 0

−∞
µ(
√

Tz)ξ(νj(d− z))dz (A.16)

= I∗131(d)− dI∗132(d),

where0 ≤ I∗132(d) ≤ I∗0 (d). To derive an upper bound forI∗131(d), note thate−γ∗ ≤ µ(x)/(γ∗ex) <
1 for x < 0, so that we can replaceµ(x) by γ∗ex in the expression for the integral. Then, using
integration by parts we arrive at

0 ≤
∫ 0

−∞
(−z)e

√
Tzξ(νj(d− z))dz = (

√
T )−1

∫ 0

−∞
(−z)ξ(νj(d− z))d(e

√
Tz)

= (
√

T )−1

∫ 0

−∞
e
√

Tzξ(νj(d− z))dz − νj(
√

T )−1

∫ 0

−∞
ze
√

Tzξ′(νj(d− z))dz.(A.17)

Taking into account that both integrals in (A.17) are positive, we obtain
∣∣∣∣
∫ 0

−∞
ze
√

Tzξ(νj(d− z))dz

∣∣∣∣ ≤ (
√

T )−1

∫ 0

−∞
e
√

Tzξ(νj(d− z))dz,

which implies that|I∗131(d)/I∗0 (d)| = O
(
1/
√

T
)

= O (|d|) .

Proof of Theorem 1. Since the wavelet basis is orthonormal,

R(n, Hr(A)) = E(θ̂0 − θ0)
2 +

J−1∑
j=0

2j−1−1∑

k=−2j−1

E(θ̂jk − θjk)
2 +

∞∑
j=J

2j−1−1∑

k=−2j−1

θ2
jk. (A.18)

Observe that the first term in (A.18) isO(T−1) while the last term is bounded by2−2rJA =
O(T−2r) due to (3.15), i.e. the main contribution toR(n,Hr(A)) is made by the second term.
Using (2.11), we partition(θ̂jk − θjk) as

(θ̂jk − θjk) = ∆1jk −∆2jk + ∆3jk,

where

∆1jk =
(1− λj)[I1(θjk)− θjkI0(θjk)] + λj[I

∗
1 (θjk)− θjkI

∗
0 (θjk)]

(1− λj)I0(djk) + λjI∗0 (djk) + βj

√
T ζj(

√
Tdjk)

,

∆2jk =
θjkβj

√
T

[
(1− λj)η(

√
Tθjk) + λjµ(

√
Tθjk)

]

(1− λj)I0(djk) + λjI∗0 (djk) + βj

√
T ζj(

√
Tdjk)

,

∆3jk =
(1− λj)I1(djk) + λjI

∗
1 (djk)

(1− λj)I0(djk) + λjI∗0 (djk) + βj

√
T ζj(

√
Tdjk)

− (1− λj)I1(θjk) + λjI
∗
1 (θjk)

(1− λj)I0(θjk) + λjI∗0 (θjk) + βj

√
T ζj(

√
Tθjk)

.
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Therefore,

R =
J−1∑
j=0

2j−1−1∑

k=−2j−1

E(θ̂jk − θjk)
2 ≤ 3(R1 + R2 + R3) (A.19)

with

R1 =
J−1∑
j=0

2j−1−1∑

k=−2j−1

∆2
1jk, R2 =

J−1∑
j=0

2j−1−1∑

k=−2j−1

∆2
2jk, R3 =

J−1∑
j=0

2j−1−1∑

k=−2j−1

E∆2
3jk.

Let us examine each of the terms in turn.

Note thatR1 = R11 + R12 + R13 where

R11 =

j0∑
j=0

2j−1−1∑

k=−2j−1

∆2
1jk, R12 =

J0∑
j=j0+1

2j−1−1∑

k=−2j−1

∆2
1jk, R13 =

J−1∑
j=J0+1

2j−1−1∑

k=−2j−1

∆2
1jk.

To establish an asymptotic upper bound forR11 observe thatλj = 0 asj ≤ j0 and

|∆1jk| ≤ |I1(θjk)/I0(θjk)− θjk| = O (νj/T ) + O (νj|θjk|/T ) (A.20)

by combination of Lemma 1 (withνj|θjk| bounded) and assumption (3.21). Since the sum over
k contains2j terms, (3.15), (3.25) and (A.20) yield

R11 = O

(
j0∑

j=0

2jν2
j

T 2

)
+ O




j0∑
j=0

ν4
j

22rjT 2

2j−1−1∑

k=−2j−1

θ2
jk(1 + 22jr)


 = O

(
T− 2r

2r+1

)
.(A.21)

To obtain the rate of convergence forR12 note thatλj = 0 asj0 < j < J0 , and by Lemma 4
and the inequality|∆1jk| ≤ |I1(θjk)/I0(θjk)|+ |θjk|, we derive

R12 = O




J0∑
j=j0+1

2j−1−1∑

k=−2j−1

θ2
jk


 = O

(
T−2r/(2r+1)

)
. (A.22)

For the third termR13, note that|∆1jk| ≤ |I1(θjk)/I0(θjk)| + |I∗1 (θjk)/I
∗
0 (θjk)| + 2|θjk|. Con-

ditions (3.26) and (3.15) imply that
√

T |θjk| ≤ A and, since the sum overk contains2j terms,
by Lemmas 1 and 4,

R13 = O




J−1∑
j=J0+1

2j−1−1∑

k=−2j−1

[
θ2

jk +
T 2θ2

jk

ν4
j

+
T

ν4
j

]


= O

(
J−1∑

j=J0+1

2j T

ν4
j

)
+ O




J−1∑
j=J0+1

2j−1−1∑

k=−2j−1

θ2
jk


 = O

(
T−2r/(2r+1)

)
. (A.23)
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Combination of (A.21), (A.22) and (A.23) lead toR1 = O
(
T−2r/(2r+1)

)
.

To derive an asymptotic expression forR2, partitionR2 into R21 andR22 according to the
values ofj: j ≤ j0 andj0 < j ≤ J − 1. Then, sinceλj = 0 asj ≤ j0, by assumptions (3.20)
and (3.22),

|∆2jk| ≤ βj|θjk|
√

T η(
√

Tθjk)

I0(θjk)
∼ βj|θjk|

√
T

νj

η(
√

Tθjk)

ξ(νjθjk)
= O

(
βj|θjk|

√
T

νj

)
,

whereη(x) is the normal pdf (2.6), so that formula (3.27) implies that

R21 = O




j0∑
j=0

β2
j T

22rjν2
j

2j−1−1∑

k=−2j−1

θ2
jk(1 + 22jr)


 = O

(
T−2r/(2r+1)

)
. (A.24)

For j > j0, we can use the fact that|∆2jk| ≤ |θjk|, hence

R22 = O




J−1∑
j=j0+1

2j−1−1∑

k=−2j−1

θ2
jk


 = O

(
T−2r/(2r+1)

)
. (A.25)

Therefore,R2 = O
(
T−2r/(2r+1)

)
.

Now, let us examine the variance termR3. Similarly toR11, R12 andR13, letR31, R32 and
R33 represent the portions ofR3 with j ≤ j0, j0 < j ≤ J0 andJ0 < j ≤ J − 1, respectively.

Let j ≤ j0. Note thatλj = 0 and|∆3jk| ≤ |∆4jk|+ |∆5jk| where

|∆4jk| = |I1(djk)/I0(djk)− I1(θjk)/I0(θjk)|, (A.26)

|∆5jk| = βj

∣∣∣∣
I1(djk)

I0(djk)

∣∣∣∣
√

T η(
√

Tθjk)

νj ξ(νjθjk)
+ βj

∣∣∣∣
I1(θjk)

I0(θjk)

∣∣∣∣
√

T η(
√

Tdjk)

νj ξ(νjdjk)
.

whereξ(·) is defined in (2.7) andη(·) is the normal pdf (2.6). ¿From Lemma 1 and condition
(3.21) it follows that

|∆4jk| ≤ |I1(djk)/I0(djk)− djk|+ |I1(θjk)/I0(θjk)− θjk|+ |djk − θjk|

= O
(νj

T

)
+ O

(
ν2

j |θjk|
T

)
+ O

(
ν2

j |djk − θjk|
T

)
+ O(|djk − θjk|),

and, sinceE(djk − θjk)
2 = O(T−1) andν2

j /T ≤ 1

R311 =

j0∑
j=0

2j−1−1∑

k=−2j−1

E∆2
4jk = O




j0∑
j=0

2j−1−1∑

k=−2j−1

[
1

T
+

ν2
j

T 2
+

θ2
jkν

4
j

T 2

]


= O
(
T−2r/(2r+1)

)
. (A.27)
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For∆5jk, by assumptions (3.20)–(3.22),

|∆5jk| = O

(
βj

√
T

νj

[
|djk|+ νj

T

])
+ O

(
βj

√
T

νj

[
|θjk|+ νj

T

])

= O

(
βj

√
T

νj

[
|θjk|+ |djk − θjk|+ νj

T

])

and, by (3.27),

R312 = O




j0∑
j=0

2j−1−1∑

k=−2j−1

β2
j T

ν2
j

[
1

T
+ θ2

jk +
ν2

j

T 2

]
 = O

(
T−2r/(2r+1)

)
, (A.28)

so thatR31 = O
(
T−2r/(2r+1)

)
.

To construct an asymptotic upper bound forR32 note that forj0 < j < J0 we haveλj = 0
and

|∆3jk| ≤ |I1(djk)/I0(djk)|+ |I1(θjk)/I0(θjk)|. (A.29)

If (3.23) is valid, then, combining Lemma 1 and (3.23), we derive|I1(d)/I0(d)| = O(
√

T/ν2
j )+

O(|d|T/ν2
j ). Hence,

R32 = O




J−1∑
j=j0+1

2j−1−1∑

k=−2j−1

E∆2
3jk




= O




J−1∑
j=j0+1

2j−1−1∑

k=−2j−1

[
T 2 E(djk − θjk)

2

ν4
j

+
θ2

jkT
2

ν4
j

+
T

ν4
j

]
 = O

(
T− 2r

2r+1

)
.(A.30)

If (3.23) does not hold, then in order to analyzeR32 divide it into two portions:

R321 =

J0∑
j=j0+1

2j−1−1∑

k=−2j−1

E∆2
3jk I(

√
T |θjk| → ∞),

R322 =

J0∑
j=j0+1

2j−1−1∑

k=−2j−1

E∆2
3jk I(

√
T |θjk| ≤ M),

where
√

T |θjk| ≤ M means that
√

T |θjk| are bounded by some constantM . First consider
R321. Note that if

√
T |djk| are bounded, then by Lemma 1,|I1(djk)/I0(djk)| = O(ν−2

j

√
T ).

Similarly, if
√

T |djk| → ∞, then|I1(djk)/I0(djk)| = O(|djk|) by Lemma 4, and by the same
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argument|I1(θjk)/I0(θjk)| = O(|θjk|). Then, using inequality (A.29), we obtain

R321 = O




J0∑
j=j0+1

2j−1−1∑

k=−2j−1

[
Ed2

jk +
T

ν4
j

+ θ2
jk

]
I(
√

T |θjk| → ∞)




= O




J0∑
j=j0+1

2j−1−1∑

k=−2j−1

[
E(djk − θjk)

2I(
√

T |θjk| → ∞) +
T

ν4
j

+ θ2
jk

]
 (A.31)

= O
(
T−2r/(2r+1)

)
(A.32)

sinceO(T−1) = O(T−1Tθ2
jk/[Tθ2

jk]) = O(θ2
jk) as

√
T |θjk| → ∞.

RepresentR322 = R3221 + R3222 with

R3221 =

J0∑
j=j0+1

2j−1−1∑

k=−2j−1

E
[
∆2

3jk I(|djk − θjk|
√

T > a
√

ln T )
]

I(
√

T |θjk| ≤ M),

R3222 =

J0∑
j=j0+1

2j−1−1∑

k=−2j−1

E
[
∆2

3jk I(|djk − θjk|
√

T ≤ a
√

ln T )
]

I(
√

T |θjk| ≤ M),

wherea2 ≥ 8σ2r/(2r + 1). Then, using (A.8), (A.9) and (A.29) similarly to (A.32), we arrive
at

R3221 = O




J0∑
j=j0+1

2j−1−1∑

k=−2j−1

[√
E(djk − θjk)4

√
P (|djk − θjk|

√
T > a

√
ln T ) + θ2

jk +
T

ν4
j

]


= O




J0∑
j=j0+1

2j−1−1∑

k=−2j−1

[
T− 4r

2r+1 + θ2
jk +

T

ν4
j

]
 = O

(
T− 2r

2r+1

)
(A.33)

since2J0 < T .
To derive an asymptotic upper bound forR3222, note that since|θjk|

√
T is bounded, for

someM0 > 0 and largeT we have

I(
√

T |θjk| ≤ M) I(|djk − θjk|
√

T ≤ a
√

ln T ) ≤ I(
√

T |θjk| ≤ M) I(
√

T |djk| ≤ 2a
√

ln T ) ≤
I(
√

T |θjk| ≤ M)
[
I(
√

T |djk| ≤ 2a
√

ln T )I
(√

T
νj

√
ln T → 0

)
+ I

(
νj√

T
√

ln T
≤ M1

)]

≤ I(
√

T |θjk| ≤ M)
[
I

(√
T

νj

(√
T |djk|

)
→ 0

)
+ I

(
2j(2r+1)

T (ln T )
≤ M1

)]
.

Note that (A.29), Lemma 1 and
√

Tν−1
j

(√
T |djk|

)
→ 0 imply that

E∆2
3jk = O

(
Tν−4

j (
√

T |djk|)2 + θ2
jk

)
= O

(
Tν−4

j + θ2
jk

)
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sinceE(Td2
jk) ≤ 2T

[
E(djk − θjk)

2 + θ2
jk

]
= O(1). Therefore, the portion ofR3222 corre-

sponding to the fist term in (A.34) is
(
T−2r/(2r+1)

)
. By (A.13) and (A.29),E∆2

3jk = O(E[djk−
θjk]

2 + θ2
jk), so the second term in the portion is

O




J0∑
j=j0+1

2j−1−1∑

k=−2j−1

[
T−1 + θ2

jk

]
I

[
2j = O(T

1
2r+1 (ln T )

1
2r+1 )

]

 = O

(
T− 2r

2r+1 (ln T )
1

2r+1

)
.

Consequently,

R3222 = O
(
T− 2r

2r+1 (ln n)
1

2r+1

)
, (A.34)

and formulas (A.32), (A.33) and (A.34) imply thatR32 = O
(
T− 2r

2r+1 (ln T )
1

2r+1

)
.

To derive an asymptotic upper bound forR33 note that forJ0 + 1 ≤ j ≤ J − 1 we have

|∆3jk| ≤ |∆6jk|+ |∆7jk|, (A.35)

with

|∆6jk| =

∣∣∣∣
I1(θjk)

I0(θjk)

∣∣∣∣ +

∣∣∣∣
I1(djk)

I0(djk)

∣∣∣∣ +

∣∣∣∣
I∗1 (θjk)

I∗0 (θjk)

∣∣∣∣ ,

|∆7jk| =

∣∣∣∣
I∗1 (djk)

I∗0 (djk)

∣∣∣∣ .

Note that forj > J0, Tθ2
jk = O(2−2jrT ) = O(2−2rJ0T ), i.e. Tθ2

jk are bounded. PartitionR33

asR33 ≤ 2(R331 + R332 + R333) with

R331 =
J−1∑

j=J0+1

2j−1−1∑

k=−2j−1

E∆2
6jk I(|djk − θjk|

√
T > 2 ln T ),

R332 =
J−1∑

j=J0+1

2j−1−1∑

k=−2j−1

E∆2
6jk I(|djk − θjk|

√
T ≤ 2 ln T ),

R333 =
J−1∑

j=J0+1

2j−1−1∑

k=−2j−1

E∆2
7jk.

Repeating (A.33) witha
√

ln T replaced with2 ln T and using (A.10) instead of (A.9) we obtain
R331 = O(2JT−1T−2r/(2r+1)) = O

(
T−2r/(2r+1)

)
.

SinceI(|djk − θjk|
√

T ≤ 2 ln T ) ≤ I(
√

T |djk| ≤ 2 ln T +
√

T |θjk|), and

T (
√

Tdjk)
2

ν2
j

= O

(
T ln2 T

ν2
j

)
= O

(
T ln2 T

2(2r+1)J0

)
= O

(
ln2 T

T 1/2r

)
= o(1),
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we haveTν−2
j (
√

T |djk|)2 → 0. Consequently, by Lemmas 1 and 2,

R332 = O




J−1∑
j=J0+1

2j−1−1∑

k=−2j−1

[
T ln2 T

ν4
j

+
T

ν4
j

]
 = O

(
ln2 T

T 1/2r
T−1

)
= o(T−1).

Now let us examineR333. Note thatR333 = R3331 + R3332 where

R3331 =
J−1∑

j=J0+1

2j−1−1∑

k=−2j−1

E
[
∆2

7jkI
(√

T (djk − θjk) < (4r + 1)−1 ln T
)]

,

R3332 =
J−1∑

j=J0+1

2j−1−1∑

k=−2j−1

E
[
∆2

7jkI
(√

T (djk − θjk) > (4r + 1)−1 ln T
)]

,

Note that when
√

T (djk − θjk) < (4r + 1)−1 ln T we have
√

Tν−1
j exp(

√
Tdjk) = o(1), so that

Lemma 2 is applicable and|I∗1 (djk)/I
∗
0 (djk)| = O

(√
Tν−2

j [exp(
√

Tdjk) + 1]
)

= O(ν−1
j ), so

thatR3331 = o
(
T−2r/(2r+1)

)
.

To find an asymptotic upper bound forR3332, use (A.14), , repeat (A.33) witha
√

ln T re-
placed with(4r + 1)−1 ln T and apply (A.11) instead of (A.9). Hence,R3332 = o

(
T−2r/(2r+1)

)
.

Combining all theR-terms together, we arrive at (3.28) or, when (3.23) is valid, at (3.29).

Proof of Corollary 1. It is easy to verify by direct calculations that in the case of the
normal distribution conditions (3.19)–(3.22) and (3.23) are valid. Hence, (3.29) is valid.

Proof of Corollary 2. Validity of Corollary 2 follows from the fact thatλ = 0 and
conditions (3.21) and (3.22) hold due to Lemma 1.
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