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Abstract

In this paper we consider the estimation of a density function on
the basis of a random stratified sample from weighted distributions.
We propose a linear wavelet density estimator and prove its consis-
tency. The behavior of the proposed estimator and its smoothed ver-
sions is eventually illustrated by simulated examples and a case study
involving alcohol blood level in DUI cases.
Key words: Size-biased data; Wavelet density estimation; Daubechies-
Lagarias algorithm.

1 Introduction

Size-biased data arise when the likelihood for an observation to appear in a
sample depends on its magnitude. The density associated with a size-biased
random variable Y , fY , is related to the underlying true density fX by

fY (y) =
g(y)fX(y)

µ
,

where g is the so-called weighting or biasing function and µ is defined as
the expected value of g(X), µ = E[g(X)] < ∞. In many cases a linear g is
recommended, but in general the form of g should be studied via additional
experiments.
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Several examples of this situation can be found in the literature. For
instance, in the founding paper by Cox (1969) it is shown that in renewal
theory, inter-event data constitute a biased sample if they are obtained by
sampling lifetimes in progress at a randomly chosen time instants. Pretend,
as in Efromovich (1999) that the distribution of the concentration of alcohol
in the blood of intoxicated drivers is of interest. Since the drunken driver has
a larger chance of being arrested, the collected data are size-biased. In the
field of medicine some phenomena are related to size-biased data. If, in the
context of cancer diagnostics, the cases detected by screening are compared
to the cases detected by symptoms, it will appear that screened cases have
a survival advantage. This is likely due to the larger proportion of patients
with slow-growing tumors, detected by screening but not by symptoms. A
different situation where size-biased data appear is in the estimation of length
of stay in a healthcare facility. People who have been in the facility longer (i.e.
have longer length of stay) are more likely to be sampled than people with a
shorter one. This is analogous to the classical example of the “waiting-time”
or “inspection paradox” (see Feller (1971) and Ross (1983)). The estimation
of length of stay is not in itself usually of interest, as most healthcare facilities
have records on patients’ length of stay, but the bias towards longer lengths of
stay is of importance when point-in-time surveys are used to estimate average
hospital charges, for example. In this instance, since longer lengths of stay
generally correspond to higher charges, the estimation of the distribution of
healthcare expense will be biased due to the higher probability of sampling
patients with longer lengths of stays.

Several approaches to estimate the unobserved density fX can be found
in the literature. Given the observed sample y1, . . . , yn, the so-called naive
estimator can be obtained by dividing an estimate of fY by a biasing function
g. However, according to Efromovich (1999), this method does not lead to
an optimal estimation according to asymptotic theory. Also, difficulties may
arise for a set of points y where g(y) is relatively small. In Vardi (1982),
the nonparametric maximum likelihood estimate for fX is derived. Jones
(1991) discusses the mean squared error properties of a new kernel density
estimation for size-biased data. In El Barmi and Simonoff (2000), a simple
transformation-based approach to estimating the density fX is examined.
In Efromovich (2004a, 2004b), fX is estimated via the Fourier methodology
where in addition, asymptotic results on sharp minimax density estimators
are given. An EM algorithm to approximate the nonparametric maximum
likelihood estimate is derived in De la Uña and Rod́ıguez-Casal (2007).

The importance of wavelets in density estimation is well established. The
local nature of wavelet functions promises superiority over projection esti-
mators that use classical orthonormal bases, as Fourier, Hermite, etc. The
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estimation procedures fall into the class of so-called projection estimators,
or their non-linear modifications. The wavelet estimators are simple, well-
localized in space/frequency, and share a variety of optimality properties.

It is interesting that some of the earliest contributions of wavelets in statis-
tics were in density estimation. Doukhan (1988), and Doukhan and Léon
(1990) first introduced linear wavelet density estimators and explored their
mean-square errors. Antoniadis and Carmona (1991), Kerkyacharian and Pi-
card (1992, 1993) and Walter (1992, 1994) considered the linear wavelet es-
timators in Sobolev and Besov spaces, while Donoho et al. (1995, 1996), De-
lyon and Juditsky (1993), among others, explored non-linear estimators and
their minimax optimality in Besov spaces. Recently, Chacón and Rodŕıguez-
Casal (2005) prove that under mild conditions on the family of wavelets, the
wavelet density estimators are universally consistent in the L1 sense. For a
critical discussion of the advantages and disadvantages of wavelet in density
estimation, see Walter and Ghorai (1992). To the best of our knowledge
the unpublished manuscript by Nikolaidou and Sapatinas (2006) constitutes
the single reference where the wavelet approach is undertaken, in the case of
weighted (or size-) biased data. For a detailed discussion of the performance
of wavelets density estimators and some of their advantages over traditional
methods, see Vidakovic (1999).

In this work we develop a wavelet-based estimator of fX , in the context
of stratified size-biased data, which appear when the biasing process is not
homogeneous, and illustrate our methodology on both simulated and real
data sets. The paper is organized as follows. In Section 2 a wavelet-based
estimator of the underlying density fX is derived, when only a single biasing
function is considered. This estimator is extended to the case where the
sample is stratified in Section 3. In addition, the consistency of the estimator,
in the mean squared integrated error sense is proven. Section 4 illustrates our
methodology for simulated data, where the Daubechies-Lagarias algorithm,
described in the Appendix, is implemented. Section 5 deals with a real-life
application of the proposed methodology: estimation of the density fX when
a sample of alcohol levels in fatal driving accidents is stratified. Finally, in
Section 6 we provide conclusions and delineate possible directions for future
research.
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2 Wavelet density estimator

Assume that observations y1, . . . , yn are modeled by a random variable Y
supported on [0, 1] whose density function is given by

fY (y) =
g(y)fX(y)

µ
,

where g(y) is a positive function known as biasing function and fX(y) ∈
L2([0, 1]) is a probability density of interest. The density fY (y) is normalized
by

µ =

∫ 1

0

g(y)fX(y)dy.

As fX(y) is unknown, the parameter µ is also unknown. The problem is indi-
rect since one observes Y and wants to estimate the density of an unobserved
X.

Since fX(y) is in L2([0, 1]), it allows wavelet representation

f(y) =
∑

k∈Z

cJ,kφJ,k(y) +
∞∑

j=J

∑

k∈Z

dj,kψj,k(y),

where the wavelet basis functions

{φJ,k(y) = 2J/2φ(2Jy−k), k ∈ Z}, {ψj,k(y) = 2j/2ψ(2jy−k), j ≥ J, k ∈ Z}

are generated from the scaling function φ(x), and

cJ,k =

∫
f(y)φJ,k(y)dy, dj,k =

∫
f(y)ψj,k(y)dy.

Here, J indicates the coarsest scale or lowest resolution of analysis, and a
larger j corresponds to higher resolutions (for a detailed wavelets theory, see
Vidakovic 1999).

A wavelet-based estimator of fX can be defined in terms of the projection
of fX on VJ , the multiresolution space spanned by the functions φJ,k(y), as

fX
J (y) =

∑

k∈Z

cJ,kφJ,k(y).

We first estimate the coefficients cJ,k via the expectation

E

[
µφJ,k(Y )

g(Y )

]
,
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with empirical counterpart

ĉJ,k =
µ

n

n∑

i=1

φJ,k(yi)

g(yi)
, (1)

based on n i.i.d realizations y1, . . . , yn of Y . As the parameter µ is not known,
it is estimated by

µ̂ :=
1

n−1
∑n

i=1 g
−1(yi)

.

It can be shown that the estimate 1/µ̂ is unbiased for 1/µ:

E(1/µ̂) = E(g−1(Y )) = µ−1

∫ 1

0

g(y)fX(y)g−1(y)dy = 1/µ.

Then, a linear (or projection) estimator of fX can be defined using (1) as

f̂X
J (y) =

∑

k∈Z

ĉJ,kφJ,k(y). (2)

The estimator in (2) gains in performance if regularized. Regularization
could be achieved by wavelet shrinkage. For given levels J0 and J such that
J0 < J , scaling and wavelet coefficients ĉJ0,k, and d̂j,k, for J0 ≤ j < J can
be obtained by utilizing fast Mallat’s cascade algorithm that starts with ĉJ,k.
Thus, the original estimator (2) can be represented as

f̂X
J (y) =

∑

k∈Z

ĉJ0,kφJ0,k(y) +
∑

J0≤j<J

∑

k∈Z

d̂j,kψj,k(y). (3)

To regularize f̂X
J , wavelet shrinkage to detail coefficients, d̂j,k, can be ap-

plied. Although our formulation is not a regression problem, we can think
of noisy linear projection estimator as a smoothing problem and apply stan-
dard wavelet-based regression techniques. The most common thresholding
policies is hard thresholding, for which the analytic expression is

δh(d̂j,k, λ) = d̂j,k 1(|d̂j,k| > λ),

where the threshold λ ≥ 0 depends on the distributional properties of the
wavelet coefficients. It is our experience that the optimal minimax thresholds
proposed by Donoho et al. (1996), and Delyon and Juditsky (1993), do not
work well for small samples. In that context, the universal threshold is
standardly chosen:

λ =
√

2 logn σ,
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where σ can be estimated from the wavelet decomposition by for example,

σ̂ = 1/0.6745 · MAD
(
d(J−1),·

)
,

where MAD stands for median absolute deviation from the median.
The shrunk coefficients will be denoted by d⋆

j,k, for J0 ≤ j < J . Thus, the
new “smoothed” estimator of fX is

f̃X
J (y) =

∑

k∈Z

ĉJ0,kφJ0,k(y) +
∑

J0≤j<J

∑

k∈Z

d⋆
j,kψj,k(y). (4)

If the underlying density fX is smoother than the decomposing wavelet
or the sample size is not large, the wavelet shrinkage estimators may contain
peaks and artifacts. An alternative in these cases may be another smoothing
method, such us the local linear regression smoother (Fan, 1992), which is
known to possess nice sampling properties and high minimax efficiency (Fan,
1993). In next section we will extend the projection estimate in (2) to the
stratified case and prove its consistency.

3 Extension to stratified sized biased data

In the previous we assumed that the biasing function is common for the
population, that is, all sampled observations are biased in the same way. It
might be the case that the biasing function is controlled by a covariate thus
introducing inhomogeneity in the biasing process. For instance, if in the case
of hospital-length-stay we stratify the sample according to gender, age, or
type of hospital, the biasing functions may differ.

We extend the estimate (2) of fX(y), to the case of a stratified sample with
a stratum-dependent biasing function. We will assume M differently biased
i.i.d random variables (or strata) Ym, for m = 1, . . . ,M , with corresponding
biasing functions gm(y), and common underlying density fX . If we observe
the stratified sample,

y11, . . . , y1n1
; y21, . . . , y2n2

; . . . ; yM1, . . . , yMnM
,

then the observed densities are given by

fY
m(y) =

gm(y)fX(y)

µm

, for m = 1, . . . ,M.

If N = n1 + . . .+ nM is the total sample size, then an estimator of fX based
on all observations, can be defined as

f̂X
J (y) =

M∑

m=1

αmf̂
X
m,J(m)(y), (5)
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where αm = nm/N , J(m) is the projection level in the mth stratum, and J
is defined as

J := min{J(1), . . . , J(M)}. (6)

In (5), f̂X
m,J(m) represents the projection estimate of fX defined in (2),

based on the mth stratum, depending on

ĉmJ(m),k =
µ̂m

nm

nm∑

i=1

φJ(m),k(Ymi)

gm(Ymi)
,

the estimate of cJ(m),k within stratum m.

The estimator f̂X
J (y) in (5) is consistent in the mean integrated squared

error or MISE sense. The following result holds.

Theorem 3.1. Assume that the density for X, fX(y) belongs to L2([0, 1])
and µmf

X(y)/gm(y) < B, for all y ∈ (0, 1) and m = 1, . . . ,M . Let J be as
in (6) and k(nm) be the number of coefficients ĉmJ(m),k in (5). If

k(nm) → ∞ and
k(nm)

nm

→ 0 as nm → ∞,

for all m then, the wavelet-based estimator in (5) is L2-consistent, i.e.,

lim
J→∞

E

{∫ 1

0

(
fX(y) − f̂X

J (y)
)2

dy

}
= 0.

Remark. If fX(y) is compactly supported, then k(nm) is finite, for a fixed
value of J . Indeed, as y ∈ [0, 1], then k(nm) = 2J , for all m. The proof of
Theorem 3.1 is given in the Appendix.

Again, as in the previous section, the estimators based on projection

f̂X
m,J(m)(y) =

∑

k∈Z

ĉmJ0(m),kφJ0(m),k(y) +
∑

J0(m)≤j<J(m)

∑

k∈Z

d̂m
j,kψj,k(y),

can be regularized to gain in performance. By applying wavelet shrinkage to
d̂m

j,k, we obtain the smoothed versions

f̃X
m,J(m)(y) =

∑

k∈Z

ĉmJ0(m),kφJ0(m),k(y) +
∑

J0(m)≤j<J(m)

∑

k∈Z

dm⋆

j,kψj,k(y).
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In our analysis, we used the universal thresholding rule as described in the
previous section. Finally, the smoothed estimator of fX , given a stratified
sample is

f̃X
J (y) =

M∑

m=1

αmf̃
X
m,J(m)(y), (7)

where J was defined in (6). The regularized estimator is consistent as well,
as next result states.

Theorem 3.2. Let J and k(nm) be as in Theorem 3.1 and let

J0 = min{J0(1), . . . , J0(M)}

be the minimum multiresolution level. The regularized wavelet-based estima-
tor f̃X

J (y) in (7) is L2-consistent if for all m = 1, . . . ,M ,

J0 → ∞ and
k(nm)

nm
→ 0, as nm → ∞.

The proof of Theorem 3.2 is given in the Appendix.
Denote by f̂X

s (y) the smoothed version of the projection estimate (5) after
applying local linear regression. Under the assumptions of Theorem 3.1 and
smoothness constraint on the wavelet base, f̂X

s (y) is a L2-consistent estimate
of fX(y). This follows from Fan (1992) page 1000, with the assumption that
wavelet has at least three vanishing moments.

4 Simulation results

In this section we illustrate the results from the previous sections on selected
simulated data. We also consider the problem of estimating strata dependent
biasing functions if the biasing for one single stratum is known. To implement
the estimator in (7) one needs to compute the value of the scaling function
at an arbitrary point y. Most of wavelet functions do not possess an analytic
expression in finite form, so this evaluation is not a straightforward task.

To calculate values of scaling functions we will use the Daubechies-Lagarias
algorithm, explained in detail in the Appendix. One can always tabulate the
scaling function and evaluate its value at x using scaled and shifted table
values, however Daubechies-Lagarias algorithm provides an elegant and eco-
nomic way to evaluate the scaling function.

Next five examples illuminate various aspects of our methodology.
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Example 1. In this example we assume a uniform underlying density, X ∼
U(0, 1), and a single stratum with the biasing function is g(y) = ey. Then,

fY (y) ∝ ey, y ∈ [0, 1].

We generated n = 600 data points from the observed distribution, fY . The
index of the highest resolution space was chosen to be J = 7 so that a
total of 128 (27) scaling coefficients are generated by the Debauchies-Lagarias
algorithm. Coiflet basis with six-tap filter was used. At the top of Figure
1 the projection estimate of true underlying density based on the observed
sample, is shown. At the bottom panel the thresholded wavelet estimator,
which is almost undistinguishable from the theoretical density, is depicted.

FIGURE 1 ABOUT HERE

Example 2. In this example we illustrate how the estimate (5) performs
in the case of a stratified sample. We assume an underlying X ∼ Beta(2, 2)
density. We consider three strata and observe a sample y1,1, . . . , y1,500 ∼ fY

1 ,
y2,1, . . . , y2,500 ∼ fY

2 , and y3,1, . . . , y3,500 ∼ fY
3 , where

fY
1 (y) = y2(1 − y),

fY
2 (y) = y5/2(1 − y),

fY
3 (y) = y3(1 − y),

for y ∈ [0, 1], that is, Y1 ∼ Beta(3, 2), Y2 ∼ Beta(7/2, 2), and Y3 ∼
Beta(4, 2). The biasing functions are given by g1(y) = y, g2(y) = y3/2,
and g3(y) = y2. At the top of Figure 2, the projection estimate (5) is de-
picted. The picture on the bottom left shows the thresholded estimate and
that on the bottom right shows the local linear smoothed estimate. Notice
that in this case the local linear smoother performs better than the wavelet
shrinkage, due to smooth nature of the underlying density.

FIGURE 2 ABOUT HERE

Example 3. Here we emphasize the difference in behavior between the
thresholded and local linear smoothed estimates, when the underlying density
is not smooth. Let us consider a piece-wise linear density function fX(y):

fX(y) =





8y, y ∈ [0, 1
4
)

4(1 − 2y), y ∈ [1
4
, 1

2
)

8y − 4, y ∈ [1
2
, 3

4
)

8 − 8y, y ∈ [3
4
, 1]
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We assume a size biasing function g(y) = y, and consider a biased sample of
size 1000. In the top panel of Figure 3, both the underlying (solid line) and
observed (dashdotted line) densities are shown. In addition, the projection
estimate is depicted in dotted line. Because of the shape of size biasing
function, more samples are observed in the right part of the density, and
thus this part is better estimated. In the bottom left panel the thresholded
estimate is shown (Daubechies’ filter with parameter 6 was applied), while
the panel at the bottom right depicts the local linear smoothed version.
With the exception of the estimated density for values of y less than 1/4, the
thresholded estimate performs better in this case, in the sense the peaks of
the density are better captured.

FIGURE 3 ABOUT HERE

Example 4. In this example we show how the naive estimator mentioned in
Section 1 compares to the proposed wavelet-based estimator. Given a biased
sample y1, . . . , yn the naive estimator is computed by first estimating the
observed density fY (y), and then dividing it by the biasing function g(y),
that is

f̂X
naive(y) =

µf̂Y (y)

g(y)
.

According to Efromovich (2004b) this naive estimator is rate inadmissible
whenever the biasing function is not as smooth as the underlying density
fX . Specifically, we consider a smooth fX (Beta(2, 2)), and a discontinuous
biasing function,

g(y) =

{
1, y ∈ [0, 0.4)
y, y ∈ [0.4, 1]

A total of 520 biased observations were generated, and the local linear smoothed
projection estimate was computed. This is shown at the top of Figure 4. The
naive estimator was computed as well; it is shown at the bottom of Figure 4.
The unsatisfactory performance of the naive estimator around x = 0.4 is a
consequence of the discontinuity of g(y), which however, does not affect the
wavelet-based estimate.

In the simulations with both the density and biasing functions infinitely
differentiable, similar performance results were obtained by naive and smoothed
estimates. Since the smoothness of fX is typically unknown, it is advisable
to avoid the naive estimator.

FIGURE 4 ABOUT HERE
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Example 5. In our last simulational example, we consider the problem
of estimating strata dependent biasing functions if the biasing for just one
stratum is known. Let us pretend that in Example 2, only the first biasing
function, g1(y) = y, was known. In order to estimate g2(y) and g3(y) up to a
constant, we first estimate fX(y), given g1(y), and fY

1 (y) by (4). Then, the
estimates of gm(y), for m = 2, 3 are proportional to

fY
m(y)

f̂X(y)
.

Figure 5 depicts the approximated and true functions g2(y), and g3(y), up
to a constant, in the log-scale. With usual wavelet transforms, some numer-
ical problems were encountered resulting in peaks. In order to avoid them,
we recommend boundary-corrected forward (and inverse) wavelet transform.

FIGURE 5 ABOUT HERE

5 An application to automobile accident data

In this section we apply our methodology to a real-life problem. We consider
the alcohol levels of male drivers in fatal driving accidents during 1975. This
constitutes a typical example of size-biased data because drunk drivers in
fatal accidents (resulting in death of a person) have a larger chance of being
“sampled”, that is, getting their blood alcohol level measured. The sample
is divided in two strata: drivers under thirty and over thirty years old. The
motivation is that the same alcohol content may have different influence on
young and older drivers.

The data set was obtained from the National Highway Traffic Safety Ad-
ministration Department of Transportation, in the United States, and avail-
able in www.nhtsa.dot.gov. The data set was part of the The Fatality
Analysis Reporting System (FARS) formally referred to as the Fatal Acci-
dent Reporting System. It is a collection of files documenting all qualifying
fatal crashes since 1975 that occurred within the 50 states, the District of
Columbia, and Puerto Rico. To be included in the census of crashes, a crash
had to involve a motor vehicle traveling on a trafficway customarily open to
the public, and must result in the death of a person (occupant of a vehicle
or a nonmotorist) within 30 days of the crash. The FARS analytic reference
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guide has several sections including the accident, vehicle and person files.
Our variables of interest were, within the Person File, the age and the result
of alcohol test (named BAC, from Blood Alcohol Concentration). The BAC
is a continuos variable expressed in grams/100ml.

We considered two stratified samples of total size 379, belonging to BACs
of male drivers less than or equal to 30 years old and more than 30 years
old. Upper panel in Figure 5 shows the histogram of BACs for the younger
drivers. Lower values of BACs are observed in comparison to the the bottom
panel, showing the BACs for older drivers. The reason for this could be that
the “young” sample contains significant proportion of inexperienced drivers,
so that experience plays the role in a crash and typical sample shows smaller
BACs values. However, in the case of older drivers, the accident can be
mainly attributed to alcohol intoxication.

FIGURE 5 ABOUT HERE

The difference observed in the strata histograms, concerning to the expe-
rience factor, leads us to choose the following biasing functions:

gy(t) :=
√
t

go(t) := t,

where “y” and “o” stand for young and old strata, respectively. In this way,
smaller observed BAC values have associated similar biasing functions for
both strata, but larger BAC values will be characterized by a larger biasing
function, for the older drivers case. This elicitation of biasing functions is
similar in spirit to Bayesian prior elicitation: the choice is subjective and
reflects influence of historic data, nature of the phenomenon, and common
sense.

Given the stratified sample, we applied formula (7) to obtain an estimate
of the underlying density of the BAC values. Figure 6 depicts the estimate
of the underlying density, under the previously defined biasing functions. A
bimodal density estimate is obtained. The smaller mode could be interpreted
as representing accidents in which the alcohol may not be the cause; however,
the larger mode would be related to accidents caused by alcohol intoxication.

FIGURE 6 ABOUT HERE
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6 Concluding remarks

In this paper we have developed a wavelet density estimator, in the context
of stratified sized-biased data. Under mild conditions on the underlying and
biasing functions, the defined estimator is consistent in the mean integrated
squared error sense. We have shown how the Daubechies-Lagarias algorithm
can be used to evaluate the scaling function at any point; this makes our
estimator easily computable for numerical applications. We have illustrated
the performance of the estimator with several simulated-data examples and
eventually applied the developed methodology to the estimation of a real
underlying density function, representing the alcohol concentration in male
drivers involved in fatal accident in the USA.

In our future work we plan to implement other shrinkage and smoothing
policies, and compare the performance of the estimators under the proposed
shrinkage rules. The rate-optimality of the proposed wavelet estimator is
under current investigation. In the spirit of a reproducible research all codes
written in Matlab and used in this work are available at

http://www2.isye.gatech.edu/~brani/wavelet.html.

7 Appendix

A. Proofs of Consistency

Proof of Theorem 3.1.

First, let us point out that consistency of the estimator f̂X
m,J(y), for all strata

m = 1, . . . ,M , implies that of the overall estimator f̂X
J (y). Because of ad-

ditivity, the properties of f̂X
J =

∑M
m=1 αmf̂

X
m,J(y) follow immediately from

those of f̂X
m,J , for m = 1, 2, . . . ,M . Thus,

MISE
(
f̂X

J (y)
)

=

M∑

m=1

α2
mMISE

(
f̂X

m,J(y)
)
.

Since f(y) ∈ L2 and Parseval’s identity is applicable, the coefficients cJ,k

and dj,k belong to ℓ2,

∑

k∈Z

c2J,k +

∞∑

j=J

∑

k∈Z

d2
j,k =

∫
f(y)2dy = ‖f‖2 <∞. (8)

To simplify notation we will consider the proof of consistency for stratum
s such that J(s) = J , which was defined in (6), and thus we drop index of
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the stratum s. The proof for the rest of strata is analogous, since if J → ∞,
J(m) → ∞, for all m. We first show that the ĉsJ,k is an unbiased estimate of
cJ,k.

E(ĉsJ,k) = µsE

[
φJ,k(Y )

gs(Y )

]

= µs

∫ 1

0

fY
s (y)φJ,k

gs(y)
dy

=

∫ 1

0

fX(y)φJ,k(y)dy = cJ,k.

Next we find an upper bound on the variance of ĉsJ,k.

Var(ĉsJ,k) =
1

ns

Var

(
µsφJ,k(Y )

gs(Y )

)

=
1

ns

(∫ 1

0

µ2
sφ

2
J,k(y)

g2
s(y)

fY (y)dy − c2J,k

)

=
1

ns

(∫ 1

0

µsφ
2
J,k(y)

gs(y)
fX(y)dy − c2J,k

)

≤ 1

ns

(
B

∫ 1

0

φ2
J,k(y)dy − c2J,k

)
≤ 1

ns
(B − c2J,k)

≤ B

ns

,

where constant B is as in formulation of Theorem 3.1.
From the orthogonality of φJ,k and ψj,k,
∫
φJ,k(y)ψj,k(y)dy = 0, and

∫
ψj,k(y)ψj′,k(y) = 0, for j′ 6= j,

and the Parseval’s identity (8), it follows that

∫ 1

0

(
fX(y) − f̂X

s,J(y)
)2

dy

=

∫ 1

0

(
fX(y)

)2
dy +

∫ 1

0

(
∑

k∈Z

ĉsJ,kφJ,k(y)

)2

dy − 2

∫ 1

0

fX(y)
∑

k∈Z

ĉsJ,kφJ,k(y)dy

=
∑

k∈Z

c2J,k +
∑

j≥J

∑

k∈Z

d2
j,k +

∑

k∈Z

(
ĉsJ,k

)2 − 2
∑

k∈Z

cJ,kĉ
s
J,k

=
∑

k∈Z

(ĉsJ,k − cJ,k)
2 +

∑

j≥J

∑

k∈Z

d2
j,k.
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It may be concluded that the expected L2-error is bounded since

E

{∫ 1

0

(
fX(y) − f̂X

s,J(y)
)2

dy

}

=
∑

k

E

{(
cJ,k − ĉsJ,k

)2}
+
∑

j≥J

∑

k∈Z

d2
j,k

=

k(ns)∑

k=1

Var(ĉsJ,k) +
∞∑

j=J

∑

k∈Z

d2
j,k

≤ k(ns)B

ns

+
∞∑

j=J

∑

k∈Z

d2
j,k.

Because fX(y) ∈ L2([0, 1]), (8) implies

lim
J→∞

∑

j≥J

∑

k∈Z

d2
j,k = 0.

By assumption k(ns)/ns → 0, thus the expected L2-error converges to zero,
or equivalently, the estimate f̂X

s,J is L2-consistent, and so the overall estimator
(5) is L2-consistent as well. �

Proof of Theorem 3.2.

As in the proof of Theorem 3.1, it is sufficient to show consistency for a
stratum s, such that J(s) = J , as defined in (6). The values J0(1), . . . , J0(M)
can be chosen so that

J0(s) = J0 = min{J0(1), . . . , J0(M)}.

Notice that by definition, J0(m) < J(m), for all m, so that J0 < J . The
estimator corresponding to stratum s is thus given by

f̃X
s,J(y) =

∑

k∈Z

ĉsJ0,kφJ0,k(y) +
∑

J0≤j<J

∑

k∈Z

ds⋆

j,kψj,k(y).

By mimicking the proof of Theorem 3.1, and considering the wavelet
expansion of fX(y),

fX(y) =
∑

k∈Z

cJ0,kφJ0,k(y) +
∞∑

j=J0

∑

k∈Z

dj,kψj,k(y),
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we obtain
∫ 1

0

(
fX(y) − f̃X

s,J(y)
)2

dy

≤ k(ns)B

ns

+
∑

j≥J0,k

d2
j,k +

∑

J0≤j<J

∑

k∈Z

(ds⋆

j,k)
2 − 2

∑

J0≤j<J

∑

k∈Z

dj,kd
s⋆

j,k

≤ k(ns)B

ns
+ 2

∑

J0≤j

∑

k∈Z

d2
j,k,

which goes to 0 as J0 → ∞. �

B. Daubechies-Lagarias algorithm

The Daubechies-Lagarias algorithm provides a fast and economic calculation
of the value of scaling and wavelets functions at some point. Except for the
Haar wavelet, all compactly supported orthonormal families of wavelets, such
us, the Daubechies, Symmlet, Coiflet, and others, have no a closed form.
Based on Daubechies and Lagarias (1991), local pyramidal algorithm it is
described as follows. Let φ be the scaling function of a compactly supported
wavelet generating an orthonormal multiresolution analysis (Mallat, 1999).
Suppose the support of φ is [0, l]. Let x ∈ (0, 1) and define dyad(x) =
{d1, d2, . . . , dn, . . .} as the set of 0-1 digits in dyadic representation of x, that
is, x =

∑∞

j=1 dj2
−j. Define also dyad(x, n) = {d1, . . . , dn}.

Let h = (h0, . . . , hl) be the vector of wavelet filter coefficientes. Define
the following matrices of size l × l,

T0 =
√

2(h2i−j−1)1≤i,j≤l, T1 =
√

2(h2i−j)1≤i,j≤l.

Then, it can be shown that the element a11 of matrix A defined as ,

A = lim
n→∞

Td1
· Td2

· . . . · Tdn

is equal to a11 = φ(x).
To compute the value of the mother wavelet ψ at some point x, needed

in calculations of d̂j,k in (3), the result in Pinheiro and Vidakovic (1997) can
be used,

Theorem 7.1. Let x be an arbitrary real number. Let the orthonormal MRA
be given by wavelet filter coefficients {h0, h1, . . . , hN} for N = 2n− 1. Let be
the vector u of size N defined as

u(x) = {(−1)1−[2x]hi+1−[2x], i = 0, . . . , N − 1}.

16



If for some i the index i + 1 − [2x] is negative or larger than N then the
corresponding component of u is zero. Let the vector v be defined as

v(x, n) =
1

N
1′

∏

i∈dyad([2x],n)

Ti.

Then,
ψ(x) = lim

n→∞
u(x)′v(x, n).

Alternatively, the values of detail coefficients in the decomposition (3)
can be obtain by Mallat’s algorithm applied on ĉJ,k in (2).
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Figure 1: Underlying true (solid line), biased (dashdotted line), and estimated
(dotted lines) densities. Top: Before thresholding. Bottom: After universal thresh-
olding.
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Figure 2: Underlying true (solid line) and biased (dashdotted lines) densities. Top:
projection estimate (dotted line). Bottom left: estimate after universal threshold-
ing (dashed line). Bottom right: estimate after local linear smoothing (dashed
line).
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Figure 3: Underlying true (solid line) and observed biased (dashdotted lines)
densities. Top: projection estimate (dotted line). Bottom left: estimate after
universal thresholding (dotted line). Bottom right: estimate after local linear
smoothing (dotted line).
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Figure 4: Underlying (solid line) and observed biased (dashdotted lines) densities.
Top: projection estimate (dashed line) after local linear smoothing (dotted line).
Bottom: naive estimate (dashed line)
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Figure 5: True (solid line) and estimated (dotted line) biasing functions g2(y) and
g3(y) in log-scale.
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Figure 6: Histograms of BAC values for drivers of age less than or equal to 30
(top) and more than 30 (bottom).
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Figure 7: Estimated underlying density for blood alcohol concentration values in
men in fatal driving accidents.
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