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Strictly speaking, wavelets are topic of pure mathematics, however in only a
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some mathematica do-it-yourself procedures.

Key words and phrases: Wavelets, Multiresolution analysis (mra), Haar
wavelet, Thresholding.

1991 AMS Subject Classi�cation: 42A06, 41A05, 65D05.



1 WHAT ARE WAVELETS? 2

1 What are wavelets?

Wavelets are functions that satisfy certain requirements. The very name wavelet

comes from the requirement that they should integrate to zero, \waving" above and
below the x-axis. The diminutive connotation of wavelet suggest the function has to
be well localized. Other requirements are technical and needed mostly to insure quick
and easy calculation of the direct and inverse wavelet transform.

There are many kinds of wavelets. One can choose between smooth wavelets, com-
pactly supported wavelets, wavelets with simple mathematical expressions, wavelets
with simple associated �lters, etc. The most simple is the Haar wavelet, and we dis-
cuss it as an introductory example in the next section. Examples of some wavelets
(from the family of Daubechies wavelets) are given in Figure 1. Like sines and cosines
in Fourier analysis, wavelets are used as basis functions in representing other func-
tions. Once the wavelet (sometimes called the mother wavelet)  (x) is �xed, one can
form of translations and dilations of the mother wavelet f (x�b

a
); (a; b) 2 R+�Rg. It

is convenient to take special values for a and b in de�ning the wavelet basis: a = 2�j

and b = k � 2�j; where k and j are integers. This choice of a and b is called critical

sampling and will give a sparse basis. In addition, this choice naturally connects
multiresolution analysis in signal processing with the world of wavelets.

Wavelet novices often ask, why not use the traditional Fourier methods? There
are some important di�erences between Fourier analysis and wavelets. Fourier basis
functions are localized in frequency but not in time. Small frequency changes in the
Fourier transform will produce changes everywhere in the time domain. Wavelets
are local in both frequency/scale (via dilations) and in time (via translations). This
localization is an advantage in many cases.

Second, many classes of functions can be represented by wavelets in a more com-
pact way. For example, functions with discontinuities and functions with sharp spikes
usually take substantially fewer wavelet basis functions than sine-cosine basis func-
tions to achieve a comparable approximation.

This sparse coding makes wavelets excellent tools in data compression. For ex-
ample, the FBI has standardized the use of wavelets in digital �ngerprint image com-
pression. The compression ratios are on the order of 20:1, and the di�erence between
the original image and the decompressed one can be told only by an expert. There
are many more applications of wavelets, some of them very pleasing. Coifman and
his Yale team used wavelets to clean noisy sound recordings, including old recordings
of Brahms playing his First Hungarian Dance on the piano.

This already hints at how statisticians can bene�t from wavelets. Large and noisy
data sets can be easily and quickly transformed by the discrete wavelet transform (the
counterpart of the discrete Fourier transform). The data are coded by the wavelet
coeÆcients. In addition, the epithet \fast" for Fourier transform can, in most cases,
be replaced by \faster" for the wavelets. It is well known that the computational
complexity of the fast Fourier transformation is O(n � log2(n)). For the fast wavelet
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Figure 1: Wavelets from the Daubechies family
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transform the computational complexity goes down to O(n):
Many data operations can now be done by processing the corresponding wavelet

coeÆcients. For instance, one can do data smoothing by thresholding the wavelet
coeÆcients and then returning the thresholded code to the \time domain." The
de�nition of thresholding and di�erent thresholding methods are given in Section 3.

RAW DATA-W. DECOMP -THRESHOLD -W. COMP -PROCESSED DATA

Figure 2: Data analysis by wavelets

2 How do the wavelets work?

2.1 The Haar wavelet

To explain how wavelets work, we start with an example. We choose the simplest
and the oldest of all wavelets (we are tempted to say: mother of all wavelets!), the
Haar wavelet,  (x): It is a step function taking values 1 and -1, on [0; 1

2
) and [1

2
; 1),

respectively. The graph of the Haar wavelet is given in Figure 3.
The Haar wavelet has been known for more than eighty years and has been used

in various mathematical �elds. It is known that any continuous function can be
approximated uniformly by Haar functions. (Brownian motion can even be de�ned
by using the Haar wavelet.1) Dilations and translations of the function  ,

 jk(x) = const �  (2jx� k);
de�ne an orthogonal basis in L2(R) (the space of all square integrable functions).
This means that any element in L2(R) may be represented as a linear combination
(possibly in�nite) of these basis functions.

The orthogonality of  jk is easy to check. It is apparent that
Z
 jk �  j0k0 = 0; (1)

whenever j = j 0 and k = k0 is not satis�ed simultaneously.
If j 6= j 0 (say j 0 < j), then nonzero values of the wavelet  j0k0 are contained in the

set where the wavelet  jk is constant. That makes integral (1) equal to zero:
If j = j 0, but k 6= k0, then at least one factor in the product  j0k0 �  jk is zero.

Thus the functions  ij are orthogonal.

1If � �iid N(0; 1) and Sjk(t) =
R t
0
 jk(x)dx, then Bt =def �1j=1�

2
j
�1

k=0 �jkSjk(t) (P. Levy).
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Figure 3: Haar wavelet

The constant that makes this orthogonal basis orthonormal is 2j=2: Indeed, from
the de�nition of norm2 in L2 :

1 = (const)2
Z
 2(2jx� k)dx = (const)2 � 2�j

Z
 2(t)dt = (const)2 � 2�j:

The functions  10;  11;  20;  21;  22;  23 are depicted in Figure 4. The set f jk; j 2
Z; k 2 Zg de�nes an orthonormal basis for L2. Alternatively we will consider or-
thonormal bases of the form f�j0;k;  jk; j � j0; k 2 Zg, where �00 is called the scaling
function associated with the wavelet basis  jk. The set f�j0k; k 2 Zg spans the same
subspace as f jk; j < j0; k 2 Zg. We will later make this statement more formal and
de�ne �jk. For the Haar wavelet basis the scaling function is very simple. It is unity
on the interval [0,1), i.e.

�(x) = 1(0 � x < 1):

The statistician may be interested in wavelet representations of functions gener-
ated by data sets.

Let y
~
= (y0; y1; : : : ; y2n�1) be the data vector of size 2n: The data vector can be

associated with a piecewise constant function f on [0,1) generated by y
~
as follows,

f(x) = �2n�1
k=0 yk � 1(k2�n � x < (k + 1)2�n):

The (data) function f is obviously in the L2[0; 1) space, and the wavelet decomposition
of f has the form

f(x) = c00�(x) + �n�1
j=0�

2j�1
k=0 djk jk(x): (2)

The sum with respect to j is �nite because f is a step function, and everything can
be exactly described by resolutions up to the (n� 1)-st level. For each level the sum

2jjf jj2 =def hf; fi =
R
f2:
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Figure 4: Dilations and translations of Haar wavelet on [0,1]

with respect to k is also �nite because the domain of f is �nite. In particular, no
translations of the scaling function �00 are required.

We �x the data vector y
~
and �nd the wavelet decomposition (2) explicitly. Let

y
~
= (1; 0;�3; 2; 1; 0; 1; 2). The corresponding function f is given in Figure 5. The

following matrix equation gives the connection between y
~
and the wavelet coeÆcients.

Note the constants 2j (1,
p
2 and 2) with Haar wavelets on the corresponding resolution

levels (j=0, 1, and 2).

2
66666666666664

1
0
�3
2
1
0
1
2

3
77777777777775

=

2
666666666666664

1 1
p
2 0 2 0 0 0

1 1
p
2 0 �2 0 0 0

1 1 �p2 0 0 2 0 0

1 1 �p2 0 0 �2 0 0

1 �1 0
p
2 0 0 2 0

1 �1 0
p
2 0 0 �2 0

1 �1 0 �p2 0 0 0 2

1 �1 0 �p2 0 0 0 �2

3
777777777777775

�

2
66666666666664

c00
d00
d10
d11
d20
d21
d22
d23

3
77777777777775
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Figure 5: \Data function" on [0,1)

The solution is 2
66666666666664

c00
d00
d10
d11
d20
d21
d22
d23

3
77777777777775

=

2
666666666666664

1
2

�1
2

1
2
p
2

� 1
2
p
2

1
4

�5
4

1
4

�1
4

3
777777777777775

:

Thus,

f =
1

2
�� 1

2
 00 +

1

2
p
2
 10 � 1

2
p
2
 11 +

1

4
 20 � 5

4
 21 +

1

4
 22 � 1

4
 23 (3)

The solution is easy to check. For example, when x 2 [0; 1
8
);

f(x) =
1

2
� 1

2
� 1 + 1

2
p
2
�
p
2 +

1

4
� 2 = 1:

The reader may already have the following question ready: \What will we do for
vectors y

~
of much bigger length?" Obviously, solving the matrix equations becomes

impossible.
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2.2 Mallat's multiresolution analysis, �lters, and direct and

inverse wavelet transformation

An obvious disadvantage of the Haar wavelet is that it is not continuous, and therefore
choice of the Haar basis for representing smooth functions, for example, is not natural
and economic.

2.2.1 Mallat's mra

As a more general framework we explain Mallat's Multiresolution Analysis { (mra).
The mra is a tool for a constructive description of di�erent wavelet bases.

We start with the space L2 of all square integrable functions.3 The mra is an
increasing sequence of closed subspaces fVjgj2Z which approximate L2(R):

Everything starts with a clever choice of the scaling function �. Except for the
Haar wavelet basis for which � is the characteristic function of the interval [0; 1);
the scaling function is chosen to satisfy some continuity, smoothness and tail require-
ments. But, most importantly, the family f�(x� k); k 2 Zg forms an orthonormal
basis for the reference space V0: The following relations describe the analysis.

mra 1 � � � � V�1 � V0 � V1 � � � �
The spaces Vj are nested. The space L2(R) is a closure of the union of all Vj: In other

words, [j2ZVj is dense in L2(R): The intersection of all Vj is empty.

mra 2 f(x) 2 Vj , f(2x) 2 Vj+1; j 2 Z:
The spaces Vj and Vj+1 are \similar." If the space Vj is spanned by �jk(x); k 2 Z then the

space Vj+1 is spanned by �j+1;k(x); k 2 Z. The space Vj+1 is generated by the functions

�j+1;k(x) =
p
2�jk(2x):

We now explain how the wavelets enter the picture. Because V0 � V1; any function
in V0 can be written as a linear combination of the basis functions

p
2�(2x� k) from

V1. In particular:

�(x) = �kh(k)
p
2�(2x� k): (4)

CoeÆcients h(k) are de�ned as h�(x);p2�(2x � k)i. Consider now the orthogonal
complement Wj of Vj to Vj+1 (i.e. Vj+1 = Vj �Wj). De�ne

 (x) =
p
2�k(�1)kh(�k + 1)�(2x� k): (5)

It can be shown that fp2 (2x� k); k 2 Zg is an orthonormal basis for W1.
4

3A function f is in L2(S) if
R
S
f2 is �nite.

4This can also be expressed in terms of Fourier transformations as follows: Let m0(!) be the
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Again, the similarity property of mra gives that f2j=2 (2jx � k); k 2 Zg is a
basis for Wj. Since [j2ZVj = [j2ZWj is dense in L2(R), the family f jk(x) =
2j=2 (2jx� k); j 2 Z; k 2 Zg is a basis for L2(R):

For a given function f 2 L2(R) one can �nd N such that fN 2 VN approximates
f up to preassigned precision (in terms of L2 closeness). If gi 2 Wi and fi 2 Vi, then

fN = fN�1 + gN�1 = �M
i=1gN�M + fN�M : (6)

Equation (6) is the wavelet decomposition of f: For example, the data function (2.1)
is in Vn, if we use the mra corresponding to the Haar wavelet. Note that f � fn and
f0 = 0:

2.2.2 The language of signal processing

We repeat the multiresolution analysis story in the language of signal processing
theory. Mallat's multiresolution analysis is connected with so called \pyramidal" al-
gorithms in signal processing. Also, \quadrature mirror �lters" are hidden in Mallat's
mra.

Recall from the previous section that

�(x) = �k2Zh(k)
p
2�(2x� k); (7)

and

 (x) = �k2Zg(k)
p
2�(2x� k): (8)

The l2 sequences5 fh(k); k 2 Zg and fg(k); k 2 Zg are quadrature mirror �lters in
the terminology of signal analysis. The connection between h and g is given by:

g(n) = (�1)nh(1� n):

The sequence h(k) is known as a low pass or low band �lter while g(k) is known as
the high pass or high band �lter. The following properties of h(n); g(n) can be proven
by using Fourier transforms and orthogonality: �h(k) =

p
2; �g(k) = 0:

The most compact way to describe the Mallat's mra as well to give e�ective
procedures of determining the wavelet coeÆcients is the operator representation of

�lters.

Fourier transformation of the sequence h(n); n 2 Z, i.e. m0(!) = �nh(n)e
in!: In the 'frequency

domain" the relation (4) is �̂(!) = m0(
!
2
)�̂(!

2
): If we de�ne m1(!) = e�i!m0(! + �) and  ̂(2!) =

m1(
!
2
)�̂(!

2
); then the function  corresponding to  ̂ is the wavelet associated with the mra.

5A sequence fang is in the Hilbert space l2 if �k2Za
2

k is �nite.
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For a sequence a = fang the operators H and G are de�ned by the following
coordinatewise relations:

(Ha)k = �nh(n� 2k)an

(Ga)k = �ng(n� 2k)an:

The operators H and G correspond to one step in the wavelet decomposition.
The only di�erence is that the above de�nitions do not include the

p
2 factor as in

Equations (4) and (5).
Denote the original signal by c

~
(n). If the signal is of length 2n, then c

~
(n) can be

represented by the function f(x) = �c
~

(n)
k �nk, f 2 Vn. At each stage of the wavelet

transformation we move to a coarser approximation c
~
(j�1) by c

~
(j�1) = Hc

~
(j) and

d
~
(j�1) = Gc

~
(j). Here, d

~
(j�1) is the \detail" lost by approximating c

~
(j) by the averaged

c
~
(j�1). The discrete wavelet transformation of a sequence y

~
= c

~
(n) of length 2n can

then be represented as another sequence of length 2n (notice that the sequence c
~
(j�1)

has half the length of c
~
(j)):

(d
~
(n�1); d

~
(n�2); : : : ; d

~
(1); d

~
(0); c

~
(0)): (9)

Thus the discrete wavelet transformation can be summarized as a single line:

y
~
�! (Gy

~
; GHy

~
; GH2y

~
; : : : ; GHn�1y

~
; Hny

~
):

The reconstruction formula is also simple in terms of H and G; we �rst de�ne
adjoint operators H? and G? as follows:

(H?a)n = �kh(n� 2k)ak

(G?a)n = �kg(n� 2k)ak:

Recursive application leads to:

(Gy
~
; GHy

~
; GH2y

~
; : : : ; GHj�1y

~
; Hjy

~
) �! y

~
= �n�1

j=0 (H
?)jG?d

~
(j) + (H?)nc

~
(0):

Equations (7) and (8) which generate �lter coeÆcients (sometimes called dilation

equations) look very simple for the Haar wavelet:

�(x) = �(2x) + �(2x� 1) =
1p
2

p
2�(2x) +

1p
2

p
2�(2x� 1); (10)

 (x) = �(2x)� �(2x� 1) =
1p
2

p
2�(2x)� 1p

2

p
2�(2x� 1):

The �lter coeÆcients in (10) are

h(0) = h(1) =
1p
2

g(0) = �g(1) = 1p
2
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y
~
= c(3) 1 0 -3 2 1 0 1 2

d
~
(2) 1p

2
� 5p

2
1p
2

� 1p
2

c
~
(2) 1p

2
� 1p

2
1p
2

3p
2

d
~
(1)

1 -1

c
~
(1)

0 2

d
~
(0) �p2

c
~
(0) p

2

Figure 6: Decomposition procedure
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Figure 6 schematically gives the decomposition algorithm applied to our data set.
To get the wavelet coeÆcients as in (3) we multiply components of d

~
(j); j = 0; 1; 2

and c(0) with the factor 2�N=2: Simply,

djk = 2�N=2d(j)k ; 0 � j < N (= 3):

It is interesting that in the Haar wavelet case 2�3=2c(0)0 = c00 =
1
2
is the mean of

the sample y
~
:

Figure 7 schematically gives the reconstruction algorithm for our example.
The careful reader might have already noticed that when the length of the �lter

is larger than 2, boundary problems occur. (There are no boundary problems with
the Haar wavelet!) There are two main ways to handle the boundaries: symmetric

and periodic.

3 Thresholding methods

In wavelet decomposition the �lter H is an \averaging" �lter while its mirror coun-
terpart G produces details. The wavelet coeÆcients correspond to details. When
details are small, they might be omitted without substantially a�ecting the \general
picture." Thus the idea of thresholding wavelet coeÆcients is a way of cleaning
out \unimportant" details considered to be noise. We illustrate the idea on our old
friend, the data vector (1; 0;�3; 2; 1; 0; 1; 2):
Example: The data vector (1; 0;�3; 2; 1; 0; 1; 2) is transformed into the vector

(
1p
2
;� 5p

2
;
1p
2
;� 1p

2
; 1;�1;�

p
2;
p
2):

If all coeÆcients less than 0.9 (well, our choice) are replaced by zeroes, then the
resulting (\thresholded") vector is (0;� 5p

2
; 0; 0; 1;�1;�p2;p2):

The graph of \smoothed data", after reconstruction, is given in Figure 8.

An important feature of wavelets is that they provide unconditional bases6 for not
only L2, but variety of smoothness spaces such as Sobolev and H�older spaces. As a
consequence, wavelet shrinkage acts as a smoothing operator. The same can not be
said about Fourier basis. By shrinking Fourier coeÆcients one can get bad results

6Informaly, a family f ig is an unconditional basis for a space S if one can decide if the element
f = �iai i belongs to S by looking only at jaijs.
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c
~
(0) p

2 -
H?

1 1

d
~
(0)

-
p
2 -

G?

-1 1

0 2���������9

c
~
(1) 0 2 -

H?
0 0 2p

2
2p
2

d
~
(1)

1 -1 -
G?

1p
2

- 1p
2

- 1p
2

1p
2

1p
2

- 1p
2

1p
2

3p
2

���������9

c
~
(2)

1p
2

- 1p
2

1p
2

3p
2

-
H?

1
2

1
2
�1

2
-1
2

1
2

1
2

3
2

3
2

d
~
(2) 1p

2
- 5p

2
1p
2

- 1p
2

-
G?

1
2

-1
2

-5
2

5
2

1
2

-1
2

1
2

1
2

1 0 -3 2 1 0 1 2

Figure 7: Reconstruction example
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Figure 8: \Smoothed" sequence

in terms of mean square error. Also, some bad visual artifacts can be obtained, see
Donoho (1993).

Why is thresholding good? The parsimony of wavelet transformations ensures that
the signal of interest can be well described by a relatively small number of wavelet
coeÆcients. A simple Taylor series argument shows that if the mother wavelet has L
vanishing moments and the unknown \signal" is in CL�1, then

jdjkj � const � 2�j(L�1=2)
Z
jyjLj (y)jdy:

For j large (�ne scales) this will be negligible. For a nice discussion on a compromise
between regularity (number of vanishing moments) and the mother wavelet support
see Daubechies (1992), page 244.

The process of thresholding wavelet coeÆcients can be divided into two steps.
The �rst step is the policy choice, i.e., the choice of the threshold function T . Two
standard choices are: hard and soft thresholding with corresponding transformations
given by:

T hard(d; �) = d 1(jdj > �); (11)

T soft(d; �) = (d� sgn(d)�) 1(jdj > �): (12)

The \hyperbola" function:

T hyper(d; �) = sgn(d)
p
d2 � �2 1(jdj > �); (13)
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is a compromise between hard and soft thresholding functions, (Vidakovic, 1994b).
The function T hyper is an \almost" hard thresholder with the continuity property.

x
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1
2

3

x
z

-3 -2 -1 0 1 2 3

-2
-1

0
1

2

Figure 9: Hard and soft thresholding with � = 1:

Another class of useful functions are shrinkage (tapering) functions. A function
S from that class exhibits the following properties:

S(d) � 0; d small; S(d) � d; d large:

The second step is the choice of a threshold. In the following subsections we briey
discuss some of the standard methods of selecting a threshold.

3.1 Universal threshold

Donoho and Johnstone (1993) propose a threshold � based on the following result.

Result: Let zi be iid standard normal random variables. De�ne

An = fmax
i=1;n
jzij �

q
2 logng:

Then

�n = P (An)! 0; n!1:
In addition, if

Bn(t) = fmax
i=1;n
jzij > t+

q
2 logng:
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then P (Bn(t)) < e�
t2

2 : That motivates the following threshold:

�U =
q
2 logn �̂; (14)

which Donoho and Johnstone call universal. This threshold is one of the �rst proposed
and provides an easy, fast, and automatic thresholding. The rationale is to remove all
wavelet coeÆcients that are smaller than the expected maximum of an assumed iid
normal noise sequence of given size. There are several possibilities for the estimator
�̂.

Almost all methods involve the wavelet coeÆcients of the �nest scale. The signal-
to-noise ratio is smallest at high resolutions in a wavelet decomposition for almost all
reasonably behaved signals.

Some standard estimators are:

(i) �̂2 =
1

N=2� 1
�
N=2
i=1 (dn�1;i � �d)2;

or a more robust

(ii) �̂2 = 1=0:6745 MAD(fdn�1;i; i = 1; N=2g);

where n� 1 is the highest level.
In some problems, especially with (i) large data sets, and (ii) when the � is over-

estimated, the universal thresholding gives under-�tted models.

3.2 A threshold based on Stein's unbiased estimator of risk

Donoho and Johnstone (1994) developed a technique of selecting a threshold by min-
imizing Stein's unbiased estimator of risk.

Result: Let xi
iid� N(�i; 1); i = 1; k: Let �̂

~
be an estimator of �

~
= (�1; : : : ; �k): If the

function g = fgigki=1 in representation �̂
~
(x
~
) = x

~
+ g(x

~
) is weakly di�erentiable, then

E�jj�̂
~
� �
~
jj2 = k + E�jjg(x

~
)jj2 + 2rg(x

~
); (15)

where rg = f @
@xi
gig: It is interesting that estimator �̂

~
can be nearly arbitrary; for

instance, biased and non-linear.

The application of (15) to T soft(x
~
; �) gives:

SURE(x
~
; �) = k � 2�k

i=11(jxij � �) + �k
i=1(jxij ^ �)2: (16)

The SURE is an unbiased estimator of risk, i.e.,

EjjT soft(x
~
; �)� �

~
jj2 = E SURE(x

~
; �):
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The LLN argument motivates the following threshold selection:

�sure = arg min
0����U

SURE(x
~
; �): (17)

It is possible to derive a SURE-type threshold for T hard and T hyper but the simplicity
of the representation (16) is lost.

3.3 Cross-validation

Nason (1994) proposed a very interesting cross-validatory threshold selection proce-
dure. From the original noisy data set yi; i = 1; N(= 2n); two subsequences are
formed:

�yODD
i =

y2i�1 + y2i+1

2
; i = 1; N=2; yN+1 = yN�1; (18)

and

�yEVENi =
y2i + y2i+2

2
; i = 1; N=2; yN+2 = yN : (19)

The cross-validatory threshold �C is a minimizer of

M̂(�) = �j;k(T
soft(dEV ENjk ;�)� dODD

jk )2 + �j;k(T
soft(dODD

jk ;�)� dEV ENjk )2; (20)

multiplied by the correction factor (1� log 2
logN

)�
1

2 , where dODD
jk and dEV ENjk are discrete

wavelet transformations of the sequences �yODD and �yEV EN :
Nason (1994) showed that almost always one can �nd a unique minimizer of

M̂(�) and compared the performance of the cross-validatory threshold to the Donoho-
Johnstone universal and SURE methods.

3.4 Other methods

At the expense of a slight increase of computational complexity (up to O(n logn)),
Donoho and Johnstone (1993) propose the SUREShrink method. The idea is to
shrink wavelet coeÆcients level-wise. The SURE is used only if the level has a signif-
icant signal present. Otherwise universal thresholding is used. The proposed method
has excellent smoothness adaptation properties. Wang (1994b) generalizes Nason's
crossvalidation technique by removing more than half of the data each time. The
motivation is to robustify the threshold selection procedure against the e�ect of a
correlated noise (with a long range dependence). Saito (1994) incorporates the hard
thresholding into a minimum description length procedure. Vidakovic (1994b) de-
scribes wavelet shrinkage via Bayes rules and Bayesian testing of hypothesis.
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4 Example: California earthquakes

A researcher in geology was interested in predicting earthquakes by the level of water
in nearby wells. She had a large (8192 = 213 measurements) data set of water levels
taken every hour in a period of time of about one year in a California well. Here is
the description of the problem.

The ability of water wells to act as strain meters has been observed for centuries.

The Chinese, for example, have records of water owing from wells prior to

earthquakes. Lab studies indicate that a seismic slip occurs along a fault prior

to rupture. Recent work has attempted to quantify this response, in an e�ort

to use water wells as sensitive indicators of volumetric strain. If this is possible,

water wells could aid in earthquake prediction by sensing precursory earthquake

strain.

We have water level records from six wells in southern California, collected over

a six year time span. At least 13 moderate size earthquakes (Magnitude 4.0 -

6.0) occurred in close proximity to the wells during this time interval. There is a

a signi�cant amount of noise in the water level record which must �rst be �ltered

out. Environmental factors such as earth tides and atmospheric pressure create

noise with frequencies ranging from seasonal to semidiurnal. The amount of

rainfall also a�ects the water level, as do surface loading, pumping, recharge

(such as an increase in water level due to irrigation), and sonic booms, to name

a few. Once the noise is subtracted from the signal, the record can be analyzed

for changes in water level, either an increase or a decrease depending upon

whether the aquifer is experiencing a tensile or compressional volume strain,

just prior to an earthquake.

A plot of the raw data for hourly measurements over one year (8192 = 213 obser-
vations) is given in Figure 10a. After applying the DAUB #2 wavelet transformation
and thresholding by the Donoho-Johnstone \universal" method, we got a very clear
signal with big jumps at the earthquake time. The cleaned data are given in Figure
10b. The magnitude of the water level change at the earthquake time did not get
distorted in contrast to usual smoothing techniques. This is a desirable feature of
wavelet methods. Yet, a couple of things should be addressed with more care.

(i) Possible uctuations important for the earthquake prediction are cleaned as
noise. In post-analyzing the data, having information about the earthquake time, one
might do time-sensitive thresholding.

(ii) Small spikes on the smoothed signal (Figure 10b) as well as `boundary dis-
tortions" indicate that the DAUB2 wavelet is not the most fortunate choice. Com-
promising between smoothness and the support shortness of the mother wavelet with
help of wavelet banks, one can develop ad-hoc rules for better mother wavelet (wavelet
model) choice.
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(a) Raw data, water level vs. time (b) After thresholding the wavelet coeÆcients

Figure 10: Panel (a) shows n = 8192 hourly measurements of the water level for a
well in an earthquake zone. Notice the wide range of water levels at the time of an
earthquake around t = 415.
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5 Wavelet image processing

We will explain briey how wavelets may be useful in the matrix data processing. The
most remarkable application is, without any doubt, image processing. Any (black and
white) image can be approximated by a matrix A in which the entries aij correspond
to intensities of gray in the pixel (i; j). For reasons that will be obvious later, it is
assumed that A is the square matrix of dimension 2n � 2n; n integer.

The process of the image wavelet decomposition goes as follows. On the rows of the
matrix A the �lters H and G are applied. Two resulting matrices are obtained: HrA
and GrA, both of dimension 2n�2n�1 (Subscript r suggest that the �lters are applied
on rows of the matrix A). Now on the columns of matrices HrA and GrA, �lters H
and G are applied again and the four resulting matrices HcHrA;GcHrA;HcGrA and
GcGrA of dimension 2n�1 � 2n�1 are obtained. The matrix HcHrA is the average,
while the matrices GcHrA;HcGrA and GcGrA are details (Figure 11)
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Figure 11: Lenna Image wavelet decomposition

The process can be continued with the average matrix HcHrA until a single num-
ber (\ an average" of the whole original matrix A) is obtained. Two examples are
given below.
Example 1.

This example is borrowed from Nason and Silverman (1993). The top left panel
in Figure 12 is 256 � 256 black and white image of John Lennon in 0-255 gray scale.

In the top-right �gure each pixel is contaminated by normal N(0; 60) noise. (In
Splus: le  lennon+rnorm(256*256, s=60) where lennon is the pixel matrix of
the original image.)

The two bottom �gures are restored images. The DAUB #4 �lter was used for
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the �rst �gure, while DAUB #10 was used for the second.

0 50 100 150 200 250

0
50

10
0

15
0

20
0

25
0

0 50 100 150 200 250

0
50

10
0

15
0

20
0

25
0

0 50 100 150 200 250

0
50

10
0

15
0

20
0

25
0

0 50 100 150 200 250

0
50

10
0

15
0

20
0

25
0

Figure 12: Wavelet image restoration example

Though the quality of the restored images may be criticized, the stunning property
of wavelet image analysis shows up in this example. Both restored images use only
about 1.8 % of the information contained in the \blurred" image. The compression
rate is amazing: 527120 bites go to 9695 bites after the universal thresholding.
Example 2.

This is an adaptation of the data set of J. Schmert, University of Washington. The
word �ve was recorded and each column on the top-right �gure represents a peri-
odogram over a short period of time (adjacent columns have half of their observations
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in common). The rows represent time. The original 92 � 64 matrix was cut to 64
� 64 matrix for obvious reasons. After performing hard thresholding with � = 0:25,
a compression ratio of 1:2 is achieved. The compressed �gures are shown in the two
bottom panels of Figure 13.
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Figure 13: Word FIVE data. The panels in the �rst row show to the original data.
The bottom panels show the signal after thresholding.



6 CAN YOU DO WAVELETS? 24

6 Can you do wavelets?

Yes, you can! There are several several packages that support wavelet calcula-
tions. An S-based non-commercial package is Nason and Silverman's: The Dis-

crete Wavelet Transform in S. The manual [19] describes installation and use of
Nason's software. The software is free and can be ftped7 from lib.stat.cmu.edu or
hensa.unix.ac.uk. The name of the package is wavethresh.

WaveLab package by Donoho and coauthors (http://playfair.Stanford.EDU:80/~wavelab/).
is a free Matlab-based software that is very comprehensive.

Carl Taswell (taswell@sccm.stanford.edu) developed Wavelet Toolbox forMat-

lab. The latest version is WavBox 4.0 and the software has to be registered with
the author. Some other MATLAB based software are: Matlab toolbox for W-Matrix
Multiresolution Analyses, by M.K. Kwong (kwong@mcs.anl.gov). The Rice Wavelet
Tools are a Matlab toolbox for �lter bank and wavelet design and analysis. It was
developed by the DSP group at Rice University (wlet-tools@rice.edu).

Some C-based packages are:
XWPL is an X based tool to examine one-dimensional real-valued signals using

wavelets and wavelet packets. It was developed by Fazal Majid (majid@math.yale.edu).
The Imager Wavelet Library (wvlt) is a small set of routines that allow the user to

manipulate wavelets. It was developed by Bob Lewis (bobl@cs.ubc.ca). The Multigrid
Algorithm Library of the Hamburg Multigrid Group.

There are several mathematica notebooks on wavelet omcputations. V. Wick-
erhauser, Jack Cohen, (jkc@keller.mines.colorado.edu), made theirs available to
the public.

To understand how the wavelets work, we reinvented the wheel and developed
a mathematica program for direct and inverse wavelet transformation and thresh-
olding and applied it to some exemplary data sets. The algorithms are far from
being e�ective; rather they are educational. A mathematica notebook with worked
examples is available via ftp anonymous at isds.duke.edu in /pub/brani/papers.
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7 Appendix

BeginPackage["Waves`"]

(* Author: Brani Vidakovic, ISDS, Duke University ;

Functions Dec and Comp are based on M. V. Wickerhauser's

mathematica program; December 1994 *)

Mirror::usage = "Mirror[_filter_] gives the mirror \
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filter for the input _filter_. This is an adjoint \

operator H* of the operator H corresponding to _filter_."

WT::usage = "WT[_vector_, _filter_] performs the direct \

wavelet transformation of the data vector _vector_. \

The wavelet base is chosen by _filter_. The length \

of the vector _vector_ has to be a degree of 2."

WR::usage = "WR[_vector_, _filter_] gives the wavelet \

reconstruction algorithm. From the set of wavelet \

coefficients _vector_ the data set is reconstructed. \

The wavelet base is chosen by _filter_."

Dec::usage = "An auxiliary function needed for the \

direct wavelet transformation. See WT."

Comp::usage = "An auxiliary function needed for the \

inverse wavelet transformation (wavelet reconstruction \

algorithm). See WR."

Begin["`Private`"]

Mirror[ filter_List]:= Module[{fl=Length[filter]},

Table[ -(-1)^i filter[[fl+1-i]], {i, 1, fl}]];

Dec[ vector_List, filter_List]:= Module[

{vl= Length[vector], fl=Length[filter]},

Table[

Sum[ filter[[m]] vector[[Mod[2 k+m - 3, vl]+1 ]],

{m,1,fl}],

{k,1,vl/2}]

];

Comp[ vector_List, filter_List]:= Module[

{ temp=Table[0,{i,1,2 Length[vector]}],

vl=Length[vector], fl=Length[filter]},

Do[ temp[[ Mod[2 j + i -3, 2 vl]+1]] +=

vector[[j]] filter[[i]],

{j, 1, vl}, {i, 1, fl}];
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temp];

WT[ vector_List, filter_List]:=

Module[ { wav={}, c,d, ve=vector, H=filter,

G=Mirror[filter]},

While[ Length[ve] > 1,

lev=Log[2,Length[ve]]-1;

c = Dec[ve, H];

d = Dec[ve, G];

wav= Join[ wav, d ];

ve = c]; Join[wav, c] ];

WR[ vector_List, filter_List]:=

Module[ {i=1, vl=Length[vector], c=Take[vector,-1],

d=Take[RotateRight[vector,1],-1],

mirrorf=Mirror[filter], cn, dn, k=1},

While[ i <= vl/2 ,

k += i;

i= 2 i;

cn=Comp[c, filter]+Comp[d, mirrorf];

dn=Take[RotateRight[vector, k], -i ];

c=cn;

d=dn;

];

c ];

End[ ]

EndPackage[ ]
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